R/rowmean.R

Defines functions .choose_colnames .rowstats_w .rowstats rowmedian rowmean

Documented in rowmean rowmedian

#' Compute column means based on a grouping variable
#'
#' Computes the column mean or median for each group of rows in a matrix.
#'
#' @param x A numeric matrix or matrix-like object.
#' @param group A vector or factor specifying the group assignment for each row of \code{x}.
#' Alternatively, a matrix of soft assignments for each row to each group (column).
#'
#' @details
#' The naming scheme here is somewhat inspired by the \code{\link{rowsum}} function. 
#' Admittedly, it is rather confusing when \code{\link{rowMeans}} computes the mean for a row across all columns
#' while \code{rowmean} computes the mean for a column across a subset of rows, but there you have it.
#'
#' If \code{group} is a matrix, it is expected to contain soft assignment weights for each row in \code{x}.
#' Each row of \code{group} should contain non-negative values that sum to unity.
#' These are used to compute weighted means or medians via \pkg{MatrixGenerics} functions.
#'
#' @return A numeric matrix with one row per level of \code{group},
#' where the value for each column contains the mean or median across the subset of rows corresponding that level.
#'
#' @author Aaron Lun
#' 
#' @examples
#' x <- matrix(runif(100), ncol = 5)
#' group <- sample(1:8, 20, TRUE)
#' (xmean <- rowmean(x, group))
#' (xmeds <- rowmedian(x, group))
#'
#' @export
#' @importFrom Matrix colMeans
rowmean <- function(x, group) {
    if (is.matrix(group)) {
        .rowstats_w(DelayedArray::DelayedArray(x), group, FUN=DelayedMatrixStats::colWeightedMeans)
    } else {
        .rowstats(x, group, FUN=colMeans)
    }
}

#' @export
#' @rdname rowmean
rowmedian <- function(x, group) {
    if (is.matrix(group)) {
        .rowstats_w(DelayedArray::DelayedArray(x), group, FUN=DelayedMatrixStats::colWeightedMedians)
    } else {
        .rowstats(DelayedArray::DelayedArray(x), group, FUN=DelayedMatrixStats::colMedians)
    }
}

.rowstats <- function(x, group, FUN, ...) {
    by.group <- split(seq_len(nrow(x)), group)
    output <- matrix(0, length(by.group), ncol(x), dimnames=list(names(by.group), colnames(x)))    
    for (i in seq_along(by.group)) {
        output[i,] <- FUN(x[by.group[[i]],,drop=FALSE], ...)
    }
    output
}

.rowstats_w <- function(x, group, FUN, ...) {
    group <- group/rowSums(group)
    output <- matrix(0, ncol(group), ncol(x), dimnames=list(.choose_colnames(group), colnames(x)))
    for (i in seq_len(ncol(group))) {
        output[i,] <- FUN(x, w=group[,i], ...)
    }
    output
}

.choose_colnames <- function(group) {
    vals <- colnames(group)
    if (is.null(vals)) {
        vals <- as.character(seq_len(ncol(group)))
    }
    vals
}
LTLA/TrajectoryUtils documentation built on Aug. 8, 2021, 8:51 a.m.