fig.dendrogram: Dendrogram for clustering p-values

Description Usage Arguments Value Examples

View source: R/VisualFunc.R

Description

Function for clustering normalization methods based on the p-values pattern calculated from the same dataset.

Usage

1
fig.dendrogram(DEA.pval.list, title, subset = NULL)

Arguments

DEA.pval.list

A list of p-values from differential expression analysis results with the element names to be the normalization methods

title

optional Figure title

subset

optional Vector of a subset of markers. If given, the dendrogram analysis will be limited to the given subset of markers. Leave NULL if all markers should be considered.

Value

Figure of dendrogram

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
test.norm <- pip.norm(raw=data.test, groups=data.group, norm.method = "all")
test.DE <- list(
TMM = DE.voom(RC=test.norm$TMM$dat.normed, groups = data.group),
TC = DE.voom(RC=test.norm$TC$dat.normed, groups = data.group),
UQ = DE.voom(RC=test.norm$UQ$dat.normed, groups = data.group),
med = DE.voom(RC=test.norm$med$dat.normed, groups = data.group),
DESeq = DE.voom(RC=test.norm$DESeq$dat.normed, groups = data.group),
PoissonSeq = DE.voom(RC=test.norm$PoissonSeq$dat.normed, groups = data.group),
QN = DE.voom(RC=test.norm$QN$dat.normed, groups = data.group),
RUVg = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVg$adjust.factor),
RUVs = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVs$adjust.factor),
RUVr = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVr$adjust.factor),
SVA = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$SVA$adjust.factor),
noNorm = DE.voom(RC=data.test, groups = data.group))
test.DE.pval <- lapply(1:12, function(x) test.DE[[x]]$p.val)
names(test.DE.pval) <- names(test.DE)

fig.dendrogram(DEA.pval.list = test.DE.pval, title = "Example of dendrogram")

LXQin/PRECISION.seq documentation built on Dec. 18, 2021, 3:41 a.m.