Description Usage Arguments Details Value References See Also Examples

These functions provide the density and random number generation for the Wishart distribution with the Cholesky parameterization.

1 2 |

`U` |
This is the upper-triangular |

`nu` |
This is the scalar degrees of freedom |

`S` |
This is the symmetric, positive-semidefinite, |

`log` |
Logical. If |

Application: Continuous Multivariate

Density:

*p(theta) = (2^(nu*k/2) * pi^(k(k-1)/4) * [Gamma((nu+1-i)/2) * ... * Gamma((nu+1-k)/2)])^(-1) * |S|^(-nu/2) * |Omega|^((nu-k-1)/2) * exp(-(1/2) * tr(S^(-1) Omega))*Inventor: John Wishart (1928)

Notation 1:

*Omega ~ W[nu](S)*Notation 2:

*p(Omega) = W[nu](Omega | S)*Parameter 1: degrees of freedom

*nu >= k*Parameter 2: symmetric, positive-semidefinite

*k x k*scale matrix*S*Mean:

*E(Omega) = nuS*Variance:

*var(Omega) = nu(S[i,j]^2 + S[i,i]S[j,j])*Mode:

*mode(Omega) = (nu-k-1)S*, for*nu >= k + 1*

The Wishart distribution is a generalization to multiple dimensions of the chi-square distribution, or, in the case of non-integer degrees of freedom, of the gamma distribution. However, the Wishart distribution is not called the multivariate chi-squared distribution because the marginal distribution of the off-diagonal elements is not chi-squared.

The Wishart is the conjugate prior distribution for the precision matrix
*Omega*, the inverse of which (covariance matrix
*Sigma*) is used in a multivariate normal distribution. In
this parameterization, *Omega* has been decomposed to the
upper-triangular Cholesky factor *U*, as per
`chol`

.

The integral is finite when *nu >= k*, where
*nu* is the scalar degrees of freedom parameter, and *k* is
the dimension of scale matrix *S*. The density is finite
when *nu >= k + 1*, which is recommended.

The degrees of freedom, *nu*, is equivalent to specifying a
prior sample size, indicating the confidence in *S*,
where *S* is a prior guess at the order of covariance
matrix *Sigma*. A flat prior distribution is
obtained as *nu -> 0*.

In practice, *U* is fully unconstrained for proposals
when its diagonal is log-transformed. The diagonal is exponentiated
after a proposal and before other calculations. Overall, the
Cholesky parameterization is faster than the traditional
parameterization. Compared with `dwishart`

, `dwishartc`

must additionally matrix-multiply the Cholesky back to the precision
matrix, but it does not have to check for or correct the precision
matrix to positive-semidefiniteness, which overall is slower. Compared
with `rwishart`

, `rwishartc`

must additionally
calculate a Cholesky decomposition, and is therefore slower.

The Wishart prior lacks flexibility, having only one parameter,
*nu*, to control the variability for all *k(k + 1)/2*
elements. Popular choices for the scale matrix *S*
include an identity matrix or sample covariance matrix. When the model
sample size is small, the specification of the scale matrix can be
influential.

One of many alternatives is to use hierarchical priors,
in which the main diagonal of the (identity) scale matrix and the
degrees of freedom are treated as unknowns (Bouriga and Feron, 2011;
Daniels and Kass, 1999). A hierarchical Wishart prior provides
shrinkage toward diagonality. Another alternative is to abandon the
Wishart distribution altogether for the more flexible method of Barnard
et al. (2000) or the horseshoe distribution (`dhs`

)
for sparse covariance matrices.

`dwishartc`

gives the density and
`rwishartc`

generates random deviates.

Barnard, J., McCulloch, R., and Meng, X. (2000). "Modeling Covariance
Matrices in Terms of Standard Deviations and Correlations, with
Application to Shrinkage". *Statistica Sinica*, 10, p. 1281–1311.

Bouriga, M. and Feron, O. (2011). "Estimation of Covariance Matrices Based on Hierarchical Inverse-Wishart Priors". URL: http://www.citebase.org/abstract?id=oai:arXiv.org:1106.3203.

Daniels, M., and Kass, R. (1999). "Nonconjugate Bayesian Estimation of
Covariance Matrices and its use in Hierarchical Models". *Journal
of the American Statistical Association*, 94(448), p. 1254–1263.

Wishart, J. (1928). "The Generalised Product Moment Distribution in
Samples from a Normal Multivariate Population". *Biometrika*,
20A(1-2), p. 32–52.

`chol`

,
`dchisq`

,
`dgamma`

,
`dhs`

,
`dinvwishart`

,
`dinvwishartc`

,
`dmvnp`

,
`dmvnpc`

, and
`Prec2Cov`

.

1 2 3 4 5 |

LaplacesDemonR/LaplacesDemonCpp documentation built on May 9, 2017, 4:18 a.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.