R_old_300322/rollcast.R

#' Rolling one-step ahead forecasts of Value at Risk and Expected Shortfall
#'
#' Computes rolling one-step ahead forecasts of Value at Risk and Expected
#' Shortfall (Conditional Value at Risk) by means of plain historical
#' simulation age- and volatility-weighted historical simulation as well as
#' filtered historical simulation.
#'
#'
#' @param x a numeric vector of asset returns
#' @param p confidence level for VaR calculation; default is \code{0.975}
#' @param model model for estimating conditional volatility; options are \code{'EWMA'}
#' and \code{'GARCH'}; if \code{model = 'GARCH'}, additional arguments can be adjusted
#' via \code{...}; default is \code{'EWMA'}
#' @param method method to be used for calculation; default is \code{'plain'}
#' @param lambda decay factor for the calculation of weights; default is \code{0.98}
#' for \code{method = 'age'} and \code{0.94} for \code{method = 'vwhs'} or
#' \code{method = 'fhs'}
#' @param nout number of out-of-sample observations; default is \code{NULL}
#' @param nwin window size for rolling one-step forecasting; default is \code{NULL}
#' @param nboot size of bootstrap sample; must be a single non-NA integer value
#' with \code{nboot > 0}; default is \code{NULL}
#' @param ... additional arguments of the \code{ugarchspec} function from the
#' \code{rugarch}-package; only applied if \code{model = 'GARCH'}; default
#' settings for the arguments \code{variance.model} and \code{mean.model} are:
#' \describe{
#' \item{\code{variance.model} = \code{list(model = 'sGARCH', garchOrder = c(1, 1))}}{}
#' \item{\code{mean.model} = \code{list(armaOrder = c(0, 0))}}{}
#' }
#'
#' @export
#'
#' @return Returns a list with the following elements:
#' \describe{
#' \item{VaR}{Numerical vector containing out-of-sample forecasts of Value at
#' Risk}
#' \item{ES}{Numerical vector containing out-of-sample forecasts of Expected
#' Shortfall (Conditional Value at Risk)}
#' \item{xout}{Numerical vector containing out-of-sample returns}
#' \item{p}{Confidence level for VaR calculation}
#' \item{model}{Model for estimating conditional volatility}
#' \item{method}{Method to be used for calculation}
#' \item{nout}{Number of out-of-sample observations}
#' \item{nwin}{Window size for rolling one-step forecasting}
#' \item{nboot}{Size of bootstrap sample}
#' }
#' @examples
#'
#' prices <- DAX$price.close
#' returns <- diff(log(prices))
#' n <- length(returns)
#' nout <- 250 # number of obs. for out-of-sample forecasting
#' nwin <- 500 # window size for rolling forecasts
#'
#'
#' ### Example 1 - plain historical simulation
#' results1 <- rollcast(x = returns, p = 0.975, method = 'plain', nout = nout,
#'                      nwin = nwin)
#' matplot(1:nout, cbind(-results1$xout, results1$VaR, results1$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Plain HS - 97.5% VaR and ES for the DAX30 return series')
#'
#' ### Example 2 - age weighted historical simulation
#' results2 <- rollcast(x = returns, p = 0.975, method = 'age', nout = nout,
#'                      nwin = nwin)
#' matplot(1:nout, cbind(-results2$xout, results2$VaR, results2$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Age weighted HS - 97.5% VaR and ES for the DAX30 return series')
#'
#' ### Example 3 - volatility weighted historical simulation - EWMA
#' results3 <- rollcast(x = returns, p = 0.975, model = 'EWMA',
#'                      method = 'vwhs', nout = nout, nwin = nwin)
#' matplot(1:nout, cbind(-results3$xout, results3$VaR, results3$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Vol. weighted HS (EWMA) - 97.5% VaR and ES for the DAX30 return
#'   series')
#' \donttest{
#' ### Example 4 - volatility weighted historical simulation - GARCH
#' results4 <- rollcast(x = returns, p = 0.975, model = 'GARCH',
#'                      method = 'vwhs', nout = nout, nwin = nwin)
#' matplot(1:nout, cbind(-results4$xout, results4$VaR, results4$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Vol. weighted HS (GARCH) - 97.5% VaR and ES for the DAX30 return
#'   series')
#' }
#' ### Example 5 - filtered historical simulation - EWMA
#' results5 <- rollcast(x = returns, p = 0.975, model = 'EWMA',
#'                      method = 'fhs', nout = nout, nwin = nwin, nboot = 10000)
#' matplot(1:nout, cbind(-results5$xout, results5$VaR, results5$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Filtered HS (EWMA) - 97.5% VaR and ES for the DAX30 return
#'   series')
#' \donttest{
#' ### Example 6 - filtered historical simulation - GARCH
#' results6 <- rollcast(x = returns, p = 0.975, model = 'GARCH',
#'                      method = 'fhs', nout = nout, nwin = nwin, nboot = 10000)
#' matplot(1:nout, cbind(-results6$xout, results6$VaR, results6$ES),
#'   type = 'hll',
#'   xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
#'   main = 'Filtered HS (GARCH) - 97.5% VaR and ES for the DAX30 return
#'   series')
#' }
function (x, p = 0.975, model = c("EWMA", "GARCH"),
          method = c("plain", "age", "vwhs", "fhs"),
          lambda = c(0.94, 0.98), nout = NULL, nwin = NULL, nboot = NULL,
          ...)
{
  if (length(x) <= 1 || any(is.na(x)) || !is.numeric(x)) {
    stop("A numeric vector of length > 1 and without NAs must be passed to",
         " 'x'.")
  }
  if (length(p) != 1 || is.na(p) || !is.numeric(p) || (p <=
                                                       0)) {
    stop("The argument 'p' must be a single non-NA double value with ",
         "0 < p < l.")
  }
  if (!(length(method) %in% c(1, 4)) || any(is.na(method)) ||
      !is.character(method) || !all(method %in% c("plain",
                                                  "age", "vwhs", "fhs"))) {
    stop("A single character value must be passed to 'method'.",
         "Valid choices are 'plain', 'age', 'vwhs' or 'fhs'.")
  }
  if (!(length(lambda) %in% c(1, 2)) || any(is.na(lambda)) ||
      !is.numeric(lambda) || all(lambda < 0) || all(lambda >=
                                                    1)) {
    stop("The argument 'lambda' must be a single non-NA double value with ",
         "0 < lambda < 1.")
  }
  if (length(nout) != 1 || is.na(nout) || !is.numeric(nout) ||
      nout < 0 || is.null(nout)) {
    stop("The argument 'nout' must be a single non-NA integer value.")
  }
  if (length(nwin) != 1 || is.na(nwin) || !is.numeric(nwin) ||
      nwin <= 1 || is.null(nwin)) {
    stop("The argument 'nwin' must be a single non-NA integer value\n             with nwin > 1.")
  }
  if (nwin > (length(x) - nout) || nout > (length(x) - nwin) ||
      (nwin + nout) > length(x)) {
    stop("Window size and (or) out-of-sample size are too large.")
  }
  if (method == "fhs" && (length(nboot) != 1 || is.na(nboot) ||
                          !is.numeric(nboot) || nboot <= 0)) {
    stop("The argument 'nboot' must be a single non-NA integer value with ",
         "nboot > 0.")
  }
  if (!(length(model) %in% c(1, 2)) || any(is.na(model)) ||
      !is.character(model) || !all(model %in% c("EWMA",
                                                "GARCH"))) {
    stop("A single character value must be passed to 'model'. ",
         "Valid choices are 'EWMA' or 'GARCH'.")
  }
  if (all(method == c("plain", "age", "vwhs",
                      "fhs")))
    method <- "plain"
  if (method != "fhs")
    nboot = "N/A"
  if (all(lambda == c(0.94, 0.98)) && method == "age")
    lambda <- 0.98
  if (all(lambda == c(0.94, 0.98)) && method == "vwhs" ||
      method == "fhs")
    lambda <- 0.94
  if (all(model == c("EWMA", "GARCH")))
    model <- "EWMA"
  n <- length(x)
  nin <- n - nout
  xin <- x[1:nin]
  if (nout == 0) {
    xout <- NA
  }
  else {
    xout <- x[(nin + 1):n]
  }
  xstart <- xin[(nin - nwin + 1):nin]
  fcasts <- matrix(NA, max(nout, 1), 2)
  if (method == "plain") {
    fcasts[1, ] <- unlist(hs(xstart, p = p, method = method),
                          use.names = FALSE)[1:2]
    if (nout > 1) {
      for (i in 2:nout) {
        if (i <= nwin) {
          fcasts[i, ] <- unlist(hs(c(xstart[i:nwin],
                                     xout[1:(i - 1)]), p = p, method = method),
                                use.names = FALSE)[1:2]
        }
        else {
          fcasts[i, ] <- unlist(hs(xout[(i - nwin):(i -
                                                      1)], p = p, method = method), use.names = FALSE)[1:2]
        }
      }
    }
  }
  if (method == "age") {
    fcasts[1, ] <- unlist(hs(xstart, p = p, method = method,
                             lambda = lambda), use.names = FALSE)[1:2]
    if (nout > 1) {
      for (i in 2:nout) {
        if (i <= nwin) {
          fcasts[i, ] <- unlist(hs(c(xstart[i:nwin],
                                     xout[1:(i - 1)]), p = p, method = method,
                                   lambda = lambda), use.names = FALSE)[1:2]
        }
        else {
          fcasts[i, ] <- unlist(hs(xout[(i - nwin):(i -
                                                      1)], p = p, method = method, lambda = lambda),
                                use.names = FALSE)[1:2]
        }
      }
    }
  }
  if (method == "vwhs") {
    fcasts[1, ] <- as.double(unlist(vwhs(xstart, p = p, lambda = lambda,
                                         model = model, ...), use.names = FALSE)[1:2])
    if (nout > 1) {
      for (i in 2:nout) {
        if (i <= nwin) {
          fcasts[i, ] <- as.double(unlist(vwhs(c(xstart[i:nwin],
                                                 xout[1:(i - 1)]), p = p, lambda = lambda,
                                               model = model, ...), use.names = FALSE)[1:2])
        }
        else {
          fcasts[i, ] <- as.double(unlist(vwhs(xout[(i -
                                                       nwin):(i - 1)], p = p, lambda = lambda, model = model,
                                               ...), use.names = FALSE)[1:2])
        }
      }
    }
  }
  if (method == "fhs") {
    fcasts[1, ] <- as.double(unlist(fhs(xstart, p = p, lambda = lambda,
                                        nboot = nboot, model = model, ...), use.names = FALSE)[1:2])
    if (nout > 1) {
      for (i in 2:nout) {
        if (i <= nwin) {
          fcasts[i, ] <- as.double(unlist(fhs(c(xstart[i:nwin],
                                                xout[1:(i - 1)]), p = p, lambda = lambda,
                                              nboot = nboot, model = model, ...), use.names = FALSE)[1:2])
        }
        else {
          fcasts[i, ] <- as.double(unlist(fhs(xout[(i -
                                                      nwin):(i - 1)], p = p, lambda = lambda, nboot = nboot,
                                              model = model, ...), use.names = FALSE)[1:2])
        }
      }
    }
  }
  VaR <- fcasts[, 1]
  ES <- fcasts[, 2]
  if (model == "GARCH" && method %in% c("vwhs",
                                        "fhs"))
    model <- list(...)$variance.model$model
  if (is.null(model))
    model <- "sGARCH"
  if (method %in% c("plain", "age"))
    model <- "EWMA"
  results <- list(VaR = VaR, ES = ES, xout = xout, p = p, model = model,
                  method = method, nout = nout, nwin = nwin, nboot = nboot)
  class(results) <- "quarks"
  attr(results, "function") <- "rollcast"
  results
}
Letmode/quarks documentation built on Sept. 6, 2022, 9:03 p.m.