## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE, message=FALSE, warning=FALSE, include=TRUE--------------
# install.packages('eph')
## ---- eval=FALSE, message=FALSE, warning=FALSE, include=TRUE-------------
# # install.packages('devtools') si no tiene instalado devtools
#
# devtools::install_github("holatam/eph")
## ----message=FALSE, warning=FALSE----------------------------------------
library(eph)
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
## ------------------------------------------------------------------------
ind_3_18 <- get_microdata(year=2018, trimester=2, type='individual')
## ----message=FALSE, warning=FALSE----------------------------------------
ind_2_02 <- get_microdata(year=2001, wave=2, type='individual')
## ------------------------------------------------------------------------
ind_3_18 <- organize_labels(df=ind_3_18, type='individual')
## ------------------------------------------------------------------------
hog_3_18 <- get_microdata(year=2018, trimester=3, type='hogar') %>%
organize_labels(., type='hogar')
## ------------------------------------------------------------------------
calculate_tabulates(base=ind_3_18, x='ESTADO', y='CH04', weights = 'PONDIH',
add.totals='row', add.percentage='col')
## ------------------------------------------------------------------------
calculate_tabulates(base=ind_3_18, x='ESTADO', y='CH04',
add.totals='row', add.percentage='col')
## ------------------------------------------------------------------------
bases <- get_microdata(year=2018, trimester=1:4, type='individual',
vars = c('CODUSU','NRO_HOGAR','COMPONENTE','ANO4','TRIMESTRE','CH04','CH06', #variables necesarias para hacer el panel
'ESTADO','PONDERA') ) #variables que nos interesan en nuestro análisis
bases
## ----warning=FALSE-------------------------------------------------------
pool <- organize_panels(bases=bases$microdata, variables=c('ESTADO','PONDERA'),
window='trimestral')
## ------------------------------------------------------------------------
pool
## ----message=FALSE, warning=FALSE----------------------------------------
pool %>%
organize_labels(.) %>%
calculate_tabulates(x='ESTADO', y='ESTADO_t1',
weights = "PONDERA", add.percentage='row')
## ----message=FALSE, warning=FALSE----------------------------------------
df <- get_microdata(year = 2017:2019, trimester = 1:4,type = 'individual',
vars = c('PONDERA','ESTADO','CAT_OCUP')) %>%
unnest()
df %>%
sample_n(5)
## ------------------------------------------------------------------------
df <- df %>%
group_by(year,trimester) %>%
summarise(indicador = sum(PONDERA[CAT_OCUP==3 & ESTADO==1], na.rm = T) / sum(PONDERA[ESTADO==1], na.rm = T))
df
## ----message=FALSE, warning=FALSE----------------------------------------
bases <- dplyr::bind_rows(toybase_individual_2016_03,toybase_individual_2016_04)
## ------------------------------------------------------------------------
lineas <- get_poverty_lines()
lineas %>% head()
## ---- fig.width=7, fig.height=5------------------------------------------
lineas %>%
select(-ICE) %>%
gather(canasta, valor, -periodo) %>%
ggplot() +
geom_line(aes(x=periodo, y=valor, col=canasta))
## ------------------------------------------------------------------------
canastas_reg_example %>% head()
## ------------------------------------------------------------------------
adulto_equivalente %>% head()
## ----warning=FALSE-------------------------------------------------------
bases <- dplyr::bind_rows(toybase_individual_2016_03,toybase_individual_2016_04)
base_pobreza <- calculate_poverty(base = bases, basket = canastas_reg_example,print_summary=TRUE)
## ------------------------------------------------------------------------
base_pobreza %>%
select(CODUSU,ITF,region,adequi_hogar,CBA_hogar,CBT_hogar,situacion) %>%
sample_n(10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.