R/class_spflow_network_meta.R

#' @include class_generics_and_maybes.R

#' @title Overview on spflow network classes
#'
#' @description
#' The spflow package provides three additional classes to the R environment.
#' These allow to handle origin-destination flow data efficiently, by exploiting
#' the relational structure of origin-destination data.
#'
#' Data on origins and destinations are stored in the
#' [spflow_network-class()] and data on the origin-destination pairs are
#' stored in an [spflow_network_pair-class()].
#'
#' A third object of type [spflow_network_multi-class()] gathers all information
#' from the different data sources.
#' The class can be thought of as a simple relational database which ensures
#' correct identification of origin-destination pairs with the node level information.
#'
#'
#' @name spflow_network_classes
#' @examples
#'
#' ### An example use case for the spflow network classes and model estimation
#' # load example data
#' data("paris10km_municipalities")
#' data("paris10km_neighborhood")
#' data("paris10km_commuteflows")
#'
#' # define the spflow_network...
#' # ... they are used as origins and destinations
#' # ... their neighborhood is based on contiguity
#' paris10km_net <- spflow_network(
#'   id_net = "paris10km",
#'   node_neighborhood = paris10km_neighborhood$by_contiguity,
#'   node_data = sf::st_drop_geometry(paris10km_municipalities),
#'   node_key_column = "ID_MUN")
#'
#' # define the spflow_network_pair...
#' # ... contains pairwise data (flows and distances)
#' # ... must be linked to an origin and a destination network
#' paris10km_net_pairs <- spflow_network_pair(
#'   id_orig_net = "paris10km",
#'   id_dest_net = "paris10km",
#'   pair_data = paris10km_commuteflows,
#'   orig_key_column = "ID_ORIG",
#'   dest_key_column = "ID_DEST")
#'
#'
#' # define the spflow_network_pair...
#' # ... combines information on nodes and pairs
#' paris10km_multinet <- spflow_network_multi(paris10km_net,paris10km_net_pairs)
#'
#' clog <- function(x) {
#'   y <- log(x)
#'   y - mean(y)
#' }
#'
#' # define the model that we use to explain the flows...
#' # ... D_() contains destination variables
#' # ... O_() contains origin variables
#' # ... D_() contains intra-regional variables (when origin == destination)
#' # ... P_() contains pair variables (distances)
#' flow_formula <-
#'   log(COMMUTE_FLOW + 1) ~
#'   D_(log(NB_COMPANY) + clog(MED_INCOME)) +
#'   O_(log(POPULATION) + log(NB_COMPANY) + clog(MED_INCOME)) +
#'   I_(log(NB_COMPANY) + log(POPULATION)) +
#'   P_(log(DISTANCE + 1))
#'
#' # define what variables to use in an SDM specification
#' # ... if not given all will be used
#' sdm_formula <-
#'  ~ D_(log(NB_COMPANY) + clog(MED_INCOME))
#'
#' # define the list of control parameters
#' estimation_control <- spflow_control(sdm_variables = sdm_formula)
#'
#' # Estimate the model
#' spflow(flow_formula, paris10km_multinet, estimation_control = estimation_control)
NULL
LukeCe/spflow documentation built on Nov. 11, 2023, 8:20 p.m.