View source: R/feature.sum.stats.R
feature.sum.stats | R Documentation |
This function estimates feature statistics for samples in a matrix of metabolite features.
feature.sum.stats( wdata, sammis = NA, tree_cut_height = 0.5, outlier_udist = 5, feature_names_2_exclude = NA )
wdata |
the metabolite data matrix. samples in row, metabolites in columns |
sammis |
a vector of sample missingness estimates, that is ordered to match the samples in the rows of your data matrix. |
tree_cut_height |
tree cut height is the height at which to cut the feature|metabolite dendrogram to identify "independent" features. tree_cut_height is 1-absolute(Spearman's Rho) for intra-cluster correlations. |
outlier_udist |
the interquartile range unit distance from the median to call a sample an outlier at a feature. |
feature_names_2_exclude |
A vector of feature|metabolite names to exclude from the tree building, independent feature identification process. |
a list object of length two, with (1) a data frame of summary statistics and (2) a hclust object
## define a covariance matrix cmat = matrix(1, 4, 4 ) cmat[1,] = c(1, 0.8, 0.6, 0.2) cmat[2,] = c(0.8, 1, 0.7, 0.5) cmat[3,] = c(0.6, 0.7, 1, 0.6) cmat[4,] = c(0.2, 0.5, 0.6,1) ## simulate some correlated data (multivariable random normal) set.seed(1110) d1 = MASS::mvrnorm(n = 250, mu = c(5, 45, 25, 15), Sigma = cmat ) set.seed(1010) d2 = MASS::mvrnorm(n = 250, mu = c(5, 45, 25, 15), Sigma = cmat ) ## simulate some random data d3 = sapply(1:20, function(x){ rnorm(250, 40, 5) }) ## define the data set ex_data = cbind(d1,d2,d3) rownames(ex_data) = paste0("ind", 1:nrow(ex_data)) colnames(ex_data) = paste0("var", 1:ncol(ex_data)) ## add in some missingness ex_data[sample(1:length(ex_data), 450)] = NA ## add in some technical error to two samples m = apply(ex_data, 2, function(x){ mean(x, na.rm = TRUE) }) ex_data[c(1,10), ] = ex_data[1, ] + (m*0.00001) ## run the function fss = feature.sum.stats(ex_data) ## feature summary table fss$table[1:5, ] ## plot the dendrogram plot(fss$tree, hang = -1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.