#' @name summary
#' @title Object Summaries
#' @export
summary.morphodata <- function(object, ...) {
# cat summary
cat("Object of class 'morphodata'\n")
cat(paste(" - contains ", length(levels(object$Population)), " populations\n", sep = ""))
cat(paste(" - contains ", length(levels(object$Taxon)), " taxa (defined groups)\n", sep = ""))
cat("\n")
cat(paste("Populations: ", paste(levels(object$Population), collapse = ", "), "\n", sep = ""))
cat(paste("Taxa (defined groups): ", paste(levels(object$Taxon), collapse = ", "), "\n", sep = ""))
}
#' @rdname summary
#' @export
summary.pcadata <- function(object, ...) {
cat("Object of class 'pcadata'; storing results of principal component analysis\n")
cat("\nVariation explained by individual axes")
if (object$rank>4) {
cat(" (listing of axes is truncated):\n")
} else {
cat(":\n")
}
descrTable = data.frame(row.names = names(object$eigenvaluesAsPercentages[1: min(object$rank, 4)]),
"Eigenvalues" = round(object$eigenvalues[1: min(object$rank, 4)], digits = 4),
"Eigenvalues as percentages" = round(object$eigenvaluesAsPercentages[1: min(object$rank, 4)], digits = 4),
"Cumulative percentage of eigenvalues" = round(object$cumulativePercentageOfEigenvalues[1: min(object$rank, 4)], digits = 4)
)
names(descrTable) = gsub(pattern = '\\.' , replacement = " ", x = names(descrTable))
descrTable = t(descrTable)
print(descrTable)
cat("\nEigenvectors")
if (object$rank>4) {
cat(" (listing of axes is truncated):\n")
} else {
cat(":\n")
}
print(object$eigenvectors[,1:min(object$rank, 4)])
}
#' @rdname summary
#' @export
summary.pcoadata <- function(object, ...) {
cat("Object of class 'pcoadata'; storing results of principal coordinates analysis\n")
cat("Resemblance coefficient: ", object$distMethod,"\n")
cat("\nVariation explained by individual axes")
if (object$rank>4) {
cat(" (listing of axes is truncated):\n")
} else {
cat(":\n")
}
descrTable = data.frame(row.names = names(object$eigenvaluesAsPercentages[1: min(object$rank, 4)]),
"Eigenvalues" = round(object$eigenvalues[1: min(object$rank, 4)], digits = 4),
"Eigenvalues as percentages" = round(object$eigenvaluesAsPercentages[1: min(object$rank, 4)], digits = 4),
"Cumulative percentage of eigenvalues" = round(object$cumulativePercentageOfEigenvalues[1: min(object$rank, 4)], digits = 4)
)
names(descrTable) = gsub(pattern = '\\.' , replacement = " ", x = names(descrTable))
descrTable = t(descrTable)
print(descrTable)
}
#' @rdname summary
#' @export
summary.nmdsdata <- function(object, ...) {
cat("Object of class 'nmdsdata'; storing results of non-metric multidimensional scaling\n")
cat("Resemblance coefficient: ", object$distMethod,"\n")
cat("\nDimensions: ", object$rank)
cat("\nStress: ", object$stress)
cat("\nScores scaled to unit root mean square, rotated to principal components")
}
#' @rdname summary
#' @export
summary.cdadata <- function(object, ...) {
cat("Object of class 'cdadata'; storing results of canonical discriminant analysis\n")
cat("\nVariation explained by individual axes")
if (object$rank>4) {
cat(" (listing of axes is truncated):\n")
} else {
cat(":\n")
}
descrTable = data.frame(row.names = colnames(object$objects$scores[,1: min(object$rank, 4)]),
"Eigenvalues" = round(object$eigenvalues[1: min(object$rank, 4)], digits = 4),
"Eigenvalues as percentages" = round(object$eigenvaluesAsPercentages[1: min(object$rank, 4)], digits = 4),
"Cumulative percentage of eigenvalues" = round(object$cumulativePercentageOfEigenvalues[1: min(object$rank, 4)], digits = 4)
)
names(descrTable) = gsub(pattern = '\\.' , replacement = " ", x = names(descrTable))
descrTable = t(descrTable)
print(descrTable)
cat("\nTotal canonical structure coefficients")
if (object$rank>4) {
cat(" (listing of axes is truncated):\n")
} else {
cat(":\n")
}
print(object$totalCanonicalStructure[,1: min(object$rank, 4)])
}
#' @rdname summary
#' @export
summary.classifdata <- function(object, ...) {
cat("Object of class 'classifdata'; storing results of classificatory discriminant analysis\n\n")
#descrTable = data.frame("ID" = object$ID,
# "Population" = object$Population,
# "Taxon" = object$Taxon,
# "classification" = object$classif,
# "probability" = object$prob,
# "correct" = object$correct)
#rownames(descrTable) = NULL
#print(descrTable)
print.classifdata(object)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.