Description Usage Arguments Value References Examples
ranks NanoString normalisation by 1) clustering of groups and; 2) variation in relative log expression. Clustering is assessed by a Generalised Dunn Index using the average linkage and average diamter for inter and intracluster distances, respectively. Overall variation is assessed by Relative Log Expression.
1 |
count_set |
a normalised, count_set summarized experiment generated by count_set.Default = NULL |
ranked normalizations
Lukasz Nieweglowski (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1. https://CRAN.R-project.org/package=clv
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # biological groups
rnf5_group <- c(rep("WT", 5), rep("KO", 5))
# sample ids
rnf5_sampleid <- c("GSM3638131", "GSM3638132", "GSM3638133", "GSM3638134",
"GSM3638135", "GSM3638136", "GSM3638137", "GSM3638138",
"GSM3638139", "GSM3638140")
# build count_set
rnf5_count_set <- count_set(count_data = Rnf5,
group = rnf5_group,
samp_id = rnf5_sampleid)
# normalize
rnf5_count_set_norm <- multi_norm(count_set = rnf5_count_set,
positive_control_scaling = TRUE,
background_correct = "mean2sd")
#plot_dir = "~/Dropbox/git/NanoStringClustR/plot_test/")
# rank normalizations
rnf5_eval <- norm_rank(rnf5_count_set_norm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.