plot.bnem: plot bnem opbject

View source: R/bnem_main.r

plot.bnemR Documentation

plot bnem opbject

Description

plots the boolen network as disjunctive normal form

Usage

## S3 method for class 'bnem'
plot(x, ...)

Arguments

x

bnemsim object

...

further arguments; see function mnem::plotDnf

Value

plot of boolean network

Author(s)

Martin Pirkl

Examples

sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
c("C", 1, "D"))
temp.file <- tempfile(pattern="interaction",fileext=".sif")
write.table(sifMatrix, file = temp.file, sep = "\t",
row.names = FALSE, col.names = FALSE,
quote = FALSE)
PKN <- CellNOptR::readSIF(temp.file)
CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1,
maxInhibit = 2, signals = c("A", "B","C","D"))
model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
nrow(slot(CNOlist, "cues")))
fc <- computeFc(CNOlist, expression)
initBstring <- rep(0, length(model$reacID))
res <- bnem(search = "greedy", model = model, CNOlist = CNOlist,
fc = fc, pkn = PKN, stimuli = "A", inhibitors = c("B","C","D"),
parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
maxSteps = Inf, seeds = 10)
plot(res)

MartinFXP/bnem documentation built on Nov. 5, 2024, 11:57 a.m.