validateGraph: validate graph

View source: R/bnem_main.r

validateGraphR Documentation

validate graph

Description

plotting the observed differential effects of an effect reporter and the expected differential effects of the regulating signalling gene

Usage

validateGraph(
  CNOlist,
  fc = NULL,
  expression = NULL,
  model,
  bString,
  Egenes = 25,
  Sgene = 1,
  parameters = list(cutOffs = c(0, 1, 0), scoring = c(0.1, 0.2, 0.9)),
  plot = TRUE,
  disc = 0,
  affyIds = TRUE,
  relFit = FALSE,
  xrot = 25,
  Rowv = FALSE,
  Colv = FALSE,
  dendrogram = "none",
  soft = TRUE,
  colSideColors = NULL,
  affychip = "hgu133plus2",
  method = "s",
  ranks = FALSE,
  breaks = NULL,
  col = "RdYlGn",
  sizeFac = 10^-10,
  order = "rank",
  verbose = TRUE,
  ...
)

Arguments

CNOlist

CNOlist object (see package CellNOptR), if available.

fc

m x l matrix of foldchanges of gene expression values or equivalent input (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left NULL, the gene expression data is used to calculate naive foldchanges.

expression

Optional normalized m x l matrix of gene expression data for m E-genes and l experiments.

model

Model object including the search space, if available. See CellNOptR::preprocessing.

bString

Binary string denoting the hyper-graph.

Egenes

Maximal number of visualized E-genes.

Sgene

Integer denoting the S-gene. See colnames(getSignals(CNOlist)[[1]]) to match integer with S-gene name.

parameters

parameters for discrete case (not recommended); has to be a list with entries cutOffs and scoring: cutOffs = c(a,b,c) with a (cutoff for real zeros), b (cutoff for real effects), c = -1 for normal scoring, c between 0 and 1 for keeping only relevant between -1 and 0 for keeping only a specific quantile of E-genes, and c > 1 for keeping the top c E-genes; scoring = c(a,b,c) with a (weight for real effects), c (weight for real zeros), b (multiplicator for effects/zeros between a and c);

plot

Plot the heatmap. If FALSE, only corresponding information is printed.

disc

Discretize the data.

affyIds

Experimental. Turn Affymetrix Ids into HGNC gene symbols.

relFit

if TRUE a relative fit for each E-gene is computed (not recommended)

xrot

See function epiNEM::HeatmapOP

Rowv

See function epiNEM::HeatmapOP

Colv

See function epiNEM::HeatmapOP

dendrogram

See function epiNEM::HeatmapOP

soft

if TRUE, assigns weights to the expected pattern

colSideColors

See function epiNEM::HeatmapOP

affychip

Define Affymetrix chip used to generate the data (optional and experimental).

method

Scoring method can be "cosine", a correlation, or a distance measure. See ?cor and ?dist for details.

ranks

if TRUE, turns data into ranks

breaks

See function epiNEM::HeatmapOP

col

See function epiNEM::HeatmapOP

sizeFac

Size factor penelizing the hyper-graph size.

order

Order by "rank", "name" or "none"

verbose

TRUE for verbose output

...

additional arguments for epiNEM::HeatmapOP

Value

lattice object with matrix information

Author(s)

Martin Pirkl

Examples

sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
c("C", 1, "D"))
temp.file <- tempfile(pattern="interaction",fileext=".sif")
write.table(sifMatrix, file = temp.file, sep = "\t",
row.names = FALSE, col.names = FALSE,
quote = FALSE)
PKN <- CellNOptR::readSIF(temp.file)
CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
signal = c("A", "B","C","D"))
model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
nrow(slot(CNOlist, "cues")))
fc <- computeFc(CNOlist, expression)
initBstring <- rep(0, length(model$reacID))
res <- bnem(search = "greedy", CNOlist = CNOlist, fc = fc,
model = model, parallel = NULL, initBstring = initBstring, draw = FALSE,
verbose = FALSE, maxSteps = Inf)
rownames(fc) <- seq_len(nrow(fc))
val <- validateGraph(CNOlist = CNOlist, fc = fc, model = model,
bString = res$bString, Egenes = 10, Sgene = 4)

MartinFXP/bnem documentation built on Nov. 5, 2024, 11:57 a.m.