power.NI.continuous <- function (mean.control, mean.experim, sd, NI.margin, sig.level = 0.025,
n.control, n.experim, summary.measure = "mean.difference", print.out = TRUE,
test.type=NULL, higher.better=T, M.boot=2000, n.rep=1000, bootCI.type="norm")
{
stopifnot(is.numeric(mean.control))
stopifnot(is.numeric(mean.experim))
stopifnot(is.numeric(sd), sd > 0)
stopifnot(is.numeric(sig.level), sig.level < 0.5, sig.level > 0)
stopifnot(is.numeric(n.control), n.control > 0)
stopifnot(is.numeric(n.experim), n.experim > 0)
stopifnot(is.numeric(n.rep), n.rep > 0)
stopifnot(is.numeric(M.boot), M.boot > 0)
stopifnot(is.character(summary.measure), summary.measure %in%c("mean.difference", "mean.ratio"))
stopifnot(is.numeric(NI.margin))
stopifnot(is.logical(print.out), !is.na(print.out))
stopifnot(is.logical(higher.better), !is.na(higher.better))
if ((summary.measure=="mean.ratio")&&(mean.control==0)) stop("The ratio of means is not an appropriate summary measure when the expected control mean is 0. Hence only the difference in means is appropriate.\n")
if ((NI.margin==0)&&(summary.measure=="mean.difference")) stop ("A Non-inferiority margin of 0 for the mean difference means this is a superiority trial.")
if ((NI.margin==1)&&(summary.measure=="mean.ratio")) stop ("A Non-inferiority margin of 1 for the mean ratio means this is a superiority trial.")
mean.exp.null<-ifelse(summary.measure=="mean.difference", mean.control+NI.margin, mean.control*NI.margin)
if (higher.better==F) {
if (mean.experim>=mean.exp.null) stop("In the alternative hypothesis the experimental treatment is not non-inferior. Mean outcome in experimental arm=",
mean.experim, ", which is greater or equal than the minimum non-tolerable mean outcome=", mean.exp.null,".\nPlease check again all parameter values. Alternatively makes sure you have specified correctly whether your outcome is such that higher values are better.")
} else {
if (mean.experim<=mean.exp.null) stop("In the alternative hypothesis the experimental treatment is not non-inferior. Mean outcome in experimental arm=",
mean.experim, ", which is lower or equal than the maximum non-tolerable mean outcome=", mean.exp.null,".\nPlease check again all parameter values. Alternatively makes sure you have specified correctly whether your outcome is such that higher values are better.")
}
ni.indicator<-rep(NA, n.rep)
for (i in 1:n.rep) {
y.control<-rnorm(n.control, mean.control, sd)
y.experim<-rnorm(n.experim, mean.experim, sd)
fit.ed<-test.NI.continuous(y.control=y.control, y.experim=y.experim,
NI.margin=NI.margin, sig.level=sig.level, summary.measure=summary.measure,
print.out=FALSE, higher.better=higher.better, test.type=test.type,
M.boot=M.boot, sd.control=sd, sd.experim=sd, bootCI.type = bootCI.type)
ni.indicator[i]<-fit.ed$non.inferiority
if (isTRUE(print.out)) {
if (i%%50==0) cat(".")
if (i%%1000==0) cat("\n")
}
}
power <- mean(ni.indicator)*100
MC.SE<-sqrt(power*(100-power)/n.rep)
power.up<-power+qnorm(0.975)*MC.SE
power.low<-power-qnorm(0.975)*MC.SE
if (print.out == T) {
if (isTRUE(print.out)) {
cat("The estimated power with the parameters provided and selected analysis method is ", power, "%, 95% Monte-carlo CI: [", power.low, "%, ", power.up, "%]")
}
}
return(power)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.