#' analyse and plot shannon diversity as a function of gymnosperm concentration
soil_to_sr <- function(){
bako <- phyloseq::subset_samples(identps_bakt, Trtment != '1champ' & Trtment != '12n')
fungo <- phyloseq::subset_samples(identps_fungi, Trtment != '1champ' & Trtment != '12n')
#---- Rarefy to even depth and Compute shannon diversity -----------------------
set.seed(100)
fungorare = phyloseq::filter_taxa(fungo, function(x) sum(x) > 1, TRUE)
fungorare = phyloseq::rarefy_even_depth(fungorare, sample.size = 1500)
fungocommun = phyloseq::filter_taxa(fungo, function(x) sum(x >= 1) > 1, TRUE)
fungocommun = phyloseq::rarefy_even_depth(fungocommun, sample.size = 1500)
bakorare = phyloseq::filter_taxa(bako, function(x) sum(x) > 1, TRUE)
bakorare = phyloseq::rarefy_even_depth(bakorare, sample.size = 7000)
bakocommun = phyloseq::filter_taxa(bako, function(x) sum(x >= 1) > 1, TRUE)
bakocommun = phyloseq::rarefy_even_depth(bakocommun, sample.size = 7000)
shannon_baktrare <- vegan::diversity(phyloseq::otu_table(bakorare),'shannon')
shannon_baktcommun <- vegan::diversity(phyloseq::otu_table(bakocommun),'shannon')
shannon_fungrare <- vegan::diversity(phyloseq::otu_table(fungorare),'shannon')
shannon_fungcommun <- vegan::diversity(phyloseq::otu_table(fungocommun),'shannon')
my_list <- list()
bkcf <- as(sample_data(fungorare), Class='data.frame')
bkcf$shannon_bc <- shannon_fungrare
bkcb <- as(sample_data(bakorare), Class='data.frame')
bkcb$shannon_bc <- shannon_baktrare
bkcf_no_NA <- filter(bkcf, !is.na(percent_gymnosperm) & !is.na(C) & !is.na(pH) & !is.na(no3_med)) %>%
select(shannon_bc, percent_gymnosperm, C, N, pH, no3_med, nh4_med, Plot, DIV, fun_div)
lme1 <- nlme::lme(exp(shannon_bc) ~ C + pH + no3_med, random = ~1 | Plot,data=bkcf_no_NA)
my_list$summary_lme1f <- summary(lme1)
my_list$rsquaref <- MuMIn::r.squaredGLMM(lme1)
bkcb_no_NA <- filter(bkcb, !is.na(percent_gymnosperm) & !is.na(C) & !is.na(pH) & !is.na(no3_med)) %>%
select(shannon_bc, C, N, pH, no3_med, nh4_med, Plot, DIV, fun_div)
lme1 <- nlme::lme(exp(shannon_bc) ~ C + pH + no3_med, random = ~1 | Plot,data=bkcb_no_NA)
my_list$summary_lme1b <- summary(lme1)
my_list$rsquareb <- MuMIn::r.squaredGLMM(lme1)
return(my_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.