#### plot difference between MSE of Maximum Likelihood and PCA
library(tidyr)
library(plotly)
load("C:/Users/Mhuth/Desktop/hidiTS/simulated_data/Lambda1point2_with_ML.RData")
simulated_data['mse_diff_f'] <- simulated_data$mse_pca_f - simulated_data$mse_ml_f
simulated_data['mse_diff_f.1'] <- simulated_data$mse_pca_f.1 - simulated_data$mse_ml_f.1
simulated_data['mse_diff_f.2'] <- simulated_data$mse_pca_f.2 - simulated_data$mse_ml_f.2
#n <- 150, y = 100
maxn <- 140
maxt <- 140
df <- simulated_data[c('mse_diff_f','n', 'T')]
df <- df[which( (df$T <= maxt) & (df$n <=maxn) ),]
ns <- unique(df$n )
ns <- ns[ns <= maxn]
Ts <- unique(df$T )
Ts <- Ts[Ts <= maxt]
df_wide <- reshape(df, idvar = "n", timevar = "T", direction = "wide")
df_wide <- subset(df_wide, select=-c(n))
fig <- plot_ly(df_wide, x = ns, y = Ts, z = t(as.matrix(df_wide)))
fig <- fig %>% add_surface()
fig<- fig %>% layout(title = "", scene = list(xaxis = list(title = "n"),
yaxis = list(title = "T"),
zaxis = list(title = "MSE PCA - MSE ML")
))
fig
#-------------BIC------------------------------------------------
maxn <- 150
maxt <- 150
df <- simulated_data[c('pca_bic_right','n', 'T')]
df <- df[which( (df$T <= maxt) & (df$n <=maxn) ),]
ns <- unique(df$n )
ns <- ns[ns <= maxn]
Ts <- unique(df$T )
Ts <- Ts[Ts <= maxt]
df_wide <- reshape(df, idvar = "n", timevar = "T", direction = "wide")
df_wide <- subset(df_wide, select=-c(n))
#####
fig <- plot_ly(df_wide, x = ns, y = Ts, z = as.matrix(df_wide))
fig <- fig %>% add_surface(showscale = FALSE)
fig<- fig %>% layout(title = "", scene = list(xaxis = list(title = "n"),
yaxis = list(title = "T"),
zaxis = list(title = "BIC")))
fig
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.