summary_se <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
#' @name summary_se
#' @title norms data within units of observation
#' @description normalize data within units of observation
#' @param data main data frame
#' @param measurevar column name of measured variable as string
#' @param groupvars column names of between-subject variables
#' @param na.rm should NAs be removed?
#' @param conf.interval width of confidence interval
#' @param .drop should unobserved variable combinations be dropped?
#' @return the summarized data frame
#'
#' @importFrom plyr ddply rename
#'
#'
#' @export
#'
options(warn = 0)
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This does the summary. For each group's data frame, return a vector with
# N, mean, and sd
datac <- ddply(data, groupvars, .drop=.drop, .fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)},
measurevar
)
# Rename the "mean" column
datac <- plyr::rename(datac, c("mean" = measurevar))
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.