#################################################################Emisisons Projections Graphs#############################################################
Set_Sector <- "Energy"
Set_Source <-"Coal"
#Historical and Projected Emissions- COAL
#group by how we want to see data
energy_by_source <- filter(data_annex_sep2019, year %in% c("1990","2000","2015","2030", "2050"), sector == Set_Sector) %>%
group_by(year, country, source)%>%
summarize(value =sum(value, na.rm = TRUE))%>%
ungroup()
char.year <- as.character(data_annex_sep2019$year)
ggplot(energy_by_source, aes(x = year, y = value, fill = source))+
geom_col()+
scale_x_continuous(name = "Year", breaks=c(1990, 2000, 2015, 2030, 2050))+
scale_y_continuous(name= "MMT CO2 Eq.")+
theme(panel.background = element_blank(), axis.line = element_line(color = "black"), panel.grid.major = element_blank())
ggsave(path="Output/Coal", filename = "Historical_Projected.pdf")
#2030 Emissions by Gas and Subsource
Source_2030 <- filter(Coal, year == "2030")%>%
group_by(value, gas, subsource, source )%>%
summarize(total =sum(value, na.rm =TRUE))%>%
mutate(percent = (value/total)*100)
ggplot(Source_2030, aes(x = gas , y= value , fill= gas))+
geom_col(position = "fill", stat = "identity")+
theme(panel.background = element_blank(), axis.line = element_line(color = "black"), panel.grid.major = element_blank())
ggsave(path="Output/Coal", filename = "2030_Gas.pdf")
#this needs work - not stacking - how to get stack and fill?
ggplot(Source_2030, aes(x=source, y=value , fill = subsource))+
geom_col(position = "stack",stat = "identity")+
theme(panel.background = element_blank(), axis.line = element_line(color = "black"), panel.grid.major = element_blank())
ggsave(path="Output/Coal", filename = "2030_Subsource.pdf")
#Projected Emissions
Emissions <- group_by(Set_Source, year)
ggplot(Set_Source, aes( x = year, y = value))+
geom_col()
geom_text(aes(label=value), na.rm = TRUE, position=position_dodge(width=0.2))+
theme(panel.background = element_blank(), axis.line = element_line(color = "black"), panel.grid.major = element_blank())
ggsave(path="Output/Coal", filename = "Projected_Emissions.pdf")
#Top Emitting Countries
coal_map<-map_data(maps::world2())
#identify top emitters to color map
top_emitters<- filter(Coal, year == "2018")%>%
group_by(year, country)%>%
summarize(value = sum(value , na.rm = TRUE)) %>%
top_n(value, n=5)
#create map
world<-ne_countries(scale = "medium", returnclass = "sf")
class(world)
location <- mutate_geocode(top_emitters, country)
ggplot(data = world) +
geom_sf()+
geom_point(data = location, aes(x=lon, y= lat, fill = country, size = value), color = "red")+
theme(panel.background = element_blank(), axis.line = element_line(color = "black"), panel.grid.major = element_blank())
ggsave(path="Output/Coal", filename = "Top_Emitters_Map.pdf")
################################MAC GRAPHICS######################################3
set_sector_MAC <-
set_source_MAC <- "NGO_MAC"
##Emission Reduction Potential 2030
source_2030_MAC <- filter(NGO_MAC, year == "2030")
emissions_reductions_potential <-
ggplot(source_2030_MAC, aes(x= Feasibility)) +
geom_bar()
##Total Reduction Potential 2020,2030,2050##
emissions_potential_total <-filter(NGO_MAC, year %in% c("2020", "2030", "2050"))
ggplot(emissions_potential_total, aes(x= feasibility, y= cost)+
geom_col()
#reduction potential by technology
reduction_by_technology <- filter(NGO_MAC, year =="2030")%>%
summarize(potential = sum(q, na.rm=TRUE))%>%
group_by(tech, potential)
ggplot(reduction_by_technology, aes(x=tech, y=q))+
geom_col()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.