| imp.missing | R Documentation |
Wrapper for the imputeR function
impute.
imp.missing(M, x = NULL, mode = NULL, ...)
M |
A matrix or data.frame containing missing values. |
x |
An optional vector that will be attached to M. This can be useful if data with missing values can be attached to a reference dataset. |
mode |
Either "cat" (cateorical variables) or "con" (continuous variables). |
... |
Currently ignored. |
A data.frame with imputed missing values.
Fernando Palluzzi fernando.palluzzi@gmail.com
# Sample 30 subjects from the morphonode simulated dataset
data <- mosaic::sample(mpm.us, 30, replace = FALSE, prob = NULL)[, 2:15]
# Entries with missing values
missing <- matrix(c(10.0, 6.3, 1, 0, 0, 0, 0, 1, NA, 2, NA, 2, 3, NA,
6.4, 2.1, 1, 0, 0, 0, 0, 1, NA, 2, NA, 1, 1, NA),
nrow = 2, byrow = TRUE)
colnames(missing) <- colnames(mpm.us[, 2:15])
# Defining categorical subset
data.cat <- data.frame(apply(mpm.us[, 2:15], 2, factor))
# Imputing missing values
data.cat <- imp.missing(data.cat, x = missing, mode = "cat")
print(tail(data.cat))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.