knneighborDistances=function(k,Distances){
# [NNind , NNdist] = knneighborDistances(k,Distances);
# return the k indices and the k distances of the k nearest neighbors for all points
# k number of nearest neigbors to find
# Distances(1:n,1:n) matrix of distances betwenn the 1:n poits or
# Distances(1:n2,1) == squareform(Distances(1:n,1:n)
#
# OUTPUT
# NNind(1:n,1:k) NNInd(i,:) are the indices of the k-nearest Neighbors of data point i
# NNdists(1:n,1:k) distances to the nearest neighbors
# author: reimplemented from matlab by MT 2014
#1.Editor: MT 01/2016
if(is(Distances)[2]=="vector"){ # vektorform
Distances = squareform(Distances)
}# [l,c]
#SortedDists=apply(Distances, 2, sort)
# S=sort(na.last=NA,VectorOfInputDists,index.return=TRUE)
S=sortdescending(-Distances)
SortedDists=-S$sort
Sind=S$indices
NNdists = t(SortedDists[2:(k+1),])
if(k==1)
NNind = as.matrix(Sind[2:(k+1),])
else
NNind = t(Sind[2:(k+1),])
return(list(NNind= NNind, NNdists = NNdists))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.