fit_net_functions | R Documentation |
By default, fit_net_clogit()
does not standardize predictor variables. If you want numeric variables
to be standardized, you can either use [bag_fit_net_clogit()]
with parameter standardize = TRUE
or provide an already standardized data set as input.
By default, fit_net_logit()
does not standardize predictor variables. If you want numeric variables
to be standardized, you can either use [bag_fit_net_logit()]
with parameter standardize = TRUE
or provide an already standardized data set as input.
fit_net_clogit(
f,
data,
samples,
i = 1,
kernel_vars = c("step_length", "ta"),
metric = c("coxnet.deviance", "Cindex", "conditionalAUC", "conditionalSomersD")[1],
metrics_evaluate = c("coxnet.deviance", "Cindex", "conditionalAUC"),
method = c("Lasso", "Ridge", "AdaptiveLasso", "DistanceDecay-AdaptiveLasso",
"DD-AdaptiveLasso", "OneZOI-AdaptiveLasso", "OZ-AdaptiveLasso",
"Grouped-AdaptiveLasso", "G-AdaptiveLasso", "HypothesisDriven-AdaptiveLasso",
"HD-AdaptiveLasso", "ElasticNet")[1],
alpha = NULL,
penalty.factor = NULL,
gamma = 1,
standardize = c("internal", "external", FALSE)[1],
predictor_table = NULL,
function_lasso_decay = c(log, function(x) x/1000)[[1]],
value_lasso_decay = 1,
function_hypothesis = c(exp)[[1]],
expected_sign_hypothesis = -1,
factor_grouped_lasso = 1,
replace_missing_NA = TRUE,
na.action = "na.pass",
out_dir_file = NULL,
verbose = FALSE,
...
)
fit_net_ssf(
f,
data,
samples,
i = 1,
kernel_vars = c("step_length", "ta"),
metric = c("coxnet.deviance", "Cindex", "conditionalAUC", "conditionalSomersD")[1],
metrics_evaluate = c("coxnet.deviance", "Cindex", "conditionalAUC"),
method = c("Lasso", "Ridge", "AdaptiveLasso", "DistanceDecay-AdaptiveLasso",
"DD-AdaptiveLasso", "OneZOI-AdaptiveLasso", "OZ-AdaptiveLasso",
"Grouped-AdaptiveLasso", "G-AdaptiveLasso", "HypothesisDriven-AdaptiveLasso",
"HD-AdaptiveLasso", "ElasticNet")[1],
alpha = NULL,
penalty.factor = NULL,
gamma = 1,
standardize = c("internal", "external", FALSE)[1],
predictor_table = NULL,
function_lasso_decay = c(log, function(x) x/1000)[[1]],
value_lasso_decay = 1,
function_hypothesis = c(exp)[[1]],
expected_sign_hypothesis = -1,
factor_grouped_lasso = 1,
replace_missing_NA = TRUE,
na.action = "na.pass",
out_dir_file = NULL,
verbose = FALSE,
...
)
fit_net_issf(
f,
data,
samples,
i = 1,
kernel_vars = c("step_length", "ta"),
metric = c("coxnet.deviance", "Cindex", "conditionalAUC", "conditionalSomersD")[1],
metrics_evaluate = c("coxnet.deviance", "Cindex", "conditionalAUC"),
method = c("Lasso", "Ridge", "AdaptiveLasso", "DistanceDecay-AdaptiveLasso",
"DD-AdaptiveLasso", "OneZOI-AdaptiveLasso", "OZ-AdaptiveLasso",
"Grouped-AdaptiveLasso", "G-AdaptiveLasso", "HypothesisDriven-AdaptiveLasso",
"HD-AdaptiveLasso", "ElasticNet")[1],
alpha = NULL,
penalty.factor = NULL,
gamma = 1,
standardize = c("internal", "external", FALSE)[1],
predictor_table = NULL,
function_lasso_decay = c(log, function(x) x/1000)[[1]],
value_lasso_decay = 1,
function_hypothesis = c(exp)[[1]],
expected_sign_hypothesis = -1,
factor_grouped_lasso = 1,
replace_missing_NA = TRUE,
na.action = "na.pass",
out_dir_file = NULL,
verbose = FALSE,
...
)
fit_net_logit(
f,
data,
samples,
i = 1,
metric = c("AUC")[1],
metrics_evaluate = c("AUC"),
method = c("Lasso", "Ridge", "AdaptiveLasso", "DistanceDecay-AdaptiveLasso",
"DD-AdaptiveLasso", "OneZOI-AdaptiveLasso", "OZ-AdaptiveLasso",
"Grouped-AdaptiveLasso", "G-AdaptiveLasso", "HypothesisDriven-AdaptiveLasso",
"HD-AdaptiveLasso", "ElasticNet")[1],
alpha = NULL,
penalty.factor = NULL,
gamma = 1,
standardize = c("internal", "external", FALSE)[1],
predictor_table = NULL,
function_lasso_decay = c(log, function(x) x/1000)[[1]],
value_lasso_decay = 1,
function_hypothesis = c(exp)[[1]],
expected_sign_hypothesis = -1,
factor_grouped_lasso = 1,
replace_missing_NA = TRUE,
na.action = "na.pass",
out_dir_file = NULL,
verbose = FALSE,
...
)
fit_net_rsf(
f,
data,
samples,
i = 1,
metric = c("AUC")[1],
metrics_evaluate = c("AUC"),
method = c("Lasso", "Ridge", "AdaptiveLasso", "DistanceDecay-AdaptiveLasso",
"DD-AdaptiveLasso", "OneZOI-AdaptiveLasso", "OZ-AdaptiveLasso",
"Grouped-AdaptiveLasso", "G-AdaptiveLasso", "HypothesisDriven-AdaptiveLasso",
"HD-AdaptiveLasso", "ElasticNet")[1],
alpha = NULL,
penalty.factor = NULL,
gamma = 1,
standardize = c("internal", "external", FALSE)[1],
predictor_table = NULL,
function_lasso_decay = c(log, function(x) x/1000)[[1]],
value_lasso_decay = 1,
function_hypothesis = c(exp)[[1]],
expected_sign_hypothesis = -1,
factor_grouped_lasso = 1,
replace_missing_NA = TRUE,
na.action = "na.pass",
out_dir_file = NULL,
verbose = FALSE,
...
)
grouped_func(coefs, phi_group = 0)
f |
|
data |
|
samples |
|
kernel_vars |
|
metric |
|
method |
|
gamma |
|
standardize |
|
replace_missing_NA |
|
out_dir_file |
|
... |
Options for |
phi_group |
Additional penalty constant for the group-based penalties. A value in the interval 0, Inf where 0 is no additional penalty and higher values correspond to higher penalties. |
Zou, H., 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association 101, 1418–1429. https://doi.org/10.1198/016214506000000735
Zou, H., 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association 101, 1418–1429. https://doi.org/10.1198/016214506000000735
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.