net_clogit | R Documentation |
Fits a conditional logistic regression/SSF/iSSF using glmnet
Function with similar name
Function with similar name
net_clogit(
f,
data,
alpha = 1,
penalty.factor = NULL,
type.measure = "deviance",
standardize = TRUE,
na.action = "na.pass",
func = c("glmnet", "cv.glmnet")[1],
...
)
net_ssf(
f,
data,
alpha = 1,
penalty.factor = NULL,
type.measure = "deviance",
standardize = TRUE,
na.action = "na.pass",
func = c("glmnet", "cv.glmnet")[1],
...
)
net_issf(
f,
data,
alpha = 1,
penalty.factor = NULL,
type.measure = "deviance",
standardize = TRUE,
na.action = "na.pass",
func = c("glmnet", "cv.glmnet")[1],
...
)
f |
|
data |
|
alpha |
Default is L1-regularization (Lasso regression), with |
penalty.factor |
|
type.measure |
|
na.action |
|
func |
Check option parallel = TRUE from glmnet. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.