source('R/packages.R')
source('R/functions.R')
# source('R/tables.R')
pscis2 <- import_pscis(workbook_name = 'pscis_phase2.xlsm') %>%
tibble::rownames_to_column() %>%
arrange(pscis_crossing_id) %>%
mutate(rowname = as.numeric(rowname))
##this is made from extract-bcfishpass-phase2.R
bcfishpass_phase2 <- readr::read_csv(file = paste0(getwd(), '/data/bcfishpass-phase2.csv'))
##this is made from extract-fwa-watershed-ltree.R
# wsheds <- sf::st_read(dsn = 'data/fishpass_mapping.gpkg', layer = 'hab_wshds_ltree')
# wsheds_up1 <- sf::st_read(dsn = 'data/fishpass_mapping.gpkg', layer = 'hab_wshds_ltree_up1')
####--------------bring in the habitat and fish data------------------
habitat_confirmations <- readxl::excel_sheets(path = "./data/habitat_confirmations.xls") %>%
purrr::set_names() %>%
purrr::map(read_excel,
path = "./data/habitat_confirmations.xls",
.name_repair = janitor::make_clean_names) %>%
purrr::set_names(janitor::make_clean_names(names(.))) %>%
purrr::map(at_trim_xlsheet2) %>% #moved to functions from https://github.com/NewGraphEnvironment/altools to reduce dependencies
purrr::map(plyr::colwise(type.convert))
hab_site_prep <- habitat_confirmations %>%
purrr::pluck("step_4_stream_site_data") %>%
# tidyr::separate(local_name, into = c('site', 'location'), remove = F) %>%
mutate(average_gradient_percent = round(average_gradient_percent * 100, 1)) %>%
mutate_if(is.numeric, round, 1) %>%
select(-gazetted_names:-site_number, -feature_type:-utm_method) ##remove the feature utms so they don't conflict with the site utms
hab_loc <- habitat_confirmations %>%
purrr::pluck("step_1_ref_and_loc_info") %>%
dplyr::filter(!is.na(site_number))%>%
mutate(survey_date = janitor::excel_numeric_to_date(as.numeric(survey_date)))
hab_site <- left_join(
hab_loc,
hab_site_prep,
by = 'reference_number'
) %>%
tidyr::separate(alias_local_name, into = c('site', 'location'), remove = F) %>%
mutate(site = as.numeric(site)) %>%
dplyr::filter(!alias_local_name %like% '_ef') ##get rid of the ef sites
##summarized the fish collection information
##----this happens after it is all sorted out as per "extract-fish.R"
hab_fish_collect_prep <- habitat_confirmations %>%
purrr::pluck("step_2_fish_coll_data") %>%
dplyr::filter(!is.na(site_number)) %>%
tidyr::separate(local_name, into = c('site', 'location', 'ef'), remove = F) %>%
mutate(site_id = paste0(site, location)) %>%
distinct(site_id, species, .keep_all = T)
##prep the location info so it is ready to join to the fish data
hab_loc2 <- hab_loc %>%
tidyr::separate(alias_local_name, into = c('site', 'location', 'ef'), remove = F) %>%
mutate(site_id = paste0(site, location)) %>%
filter(alias_local_name %like% 'ef1')
##join the tables together
hab_fish_collect_prep2 <- left_join(
select(hab_loc2, reference_number, site_id, utm_zone:utm_northing),
select(hab_fish_collect_prep, site_id, species),
by = 'site_id'
)
##add the species code
hab_fish_codes <- habitat_confirmations %>%
purrr::pluck("species_by_group") %>% ##changed from specie_by_common_name because BB burbot was wrong!!
select(-step)
hab_fish_collect <- left_join(
hab_fish_collect_prep2,
select(hab_fish_codes, common_name, species_code),
by = c('species' = 'common_name')
)
# hab_fish_collect_prep <- habitat_confirmations %>%
# purrr::pluck("step_2_fish_coll_data") %>%
# dplyr::filter(!is.na(site_number)) %>%
# select(-gazetted_name:-site_number)
# hab_fish_indiv_prep <- habitat_confirmations %>%
# purrr::pluck("step_3_individual_fish_data") %>%
# dplyr::filter(!is.na(site_number)) %>%
# select(-gazetted_names:-site_number)
# hab_fish_indiv_prep2 <- left_join(
# hab_fish_indiv_prep,
# hab_loc,
# by = 'reference_number'
# )
#
# hab_fish_collect_prep2 <- left_join(
# hab_fish_collect_prep,
# hab_loc,
# by = 'reference_number'
# )
# hab_fish_indiv <- left_join(
# hab_fish_indiv_prep2,
# select(hab_fish_codes, common_name:species_code),
# by = c('species' = 'common_name')
# ) %>%
# dplyr::distinct(alias_local_name, utm_zone, utm_easting, utm_northing, species_code)
# hab_fish_collect <- left_join(
# hab_fish_collect_prep2,
# select(hab_fish_codes, common_name:species_code),
# by = c('species' = 'common_name')
# ) %>%
# dplyr::distinct(reference_number, alias_local_name, site_number, utm_zone, utm_easting, utm_northing, species_code)
hab_features <- habitat_confirmations %>%
purrr::pluck("step_4_stream_site_data") %>%
select(reference_number,local_name, feature_type:utm_northing) %>%
filter(!is.na(feature_type))
####--------import priorities spreadsheet--------------
habitat_confirmations_priorities <- readxl::read_excel(
path = "./data/habitat_confirmations_priorities.xlsx",
.name_repair = janitor::make_clean_names) %>%
filter(!local_name %like% 'ef') %>% ##ditch the ef sites
tidyr::separate(local_name, into = c('site', 'location'), remove = F) %>%
mutate(site = as.numeric(site),
upstream_habitat_length_km = round(upstream_habitat_length_m/1000,2))
##add the priorities to the site data
hab_site_priorities <- left_join(
select(habitat_confirmations_priorities, reference_number, priority),
select(hab_site, reference_number, alias_local_name, site, utm_zone:utm_northing),
by = 'reference_number'
) %>%
filter(!is.na(priority))
##clean up the objects
rm(hab_site_prep,
# hab_fish_indiv_prep,
# hab_fish_indiv_prep2,
hab_fish_collect_prep,
hab_fish_collect_prep2,
hab_loc2)
##these orignally had modelled rather than pscis ids
# xref_pscis_my_crossing_modelled %>%
# filter(my_crossing_reference %in% c(4605732, 4600070, 4600183))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.