source('R/functions.R')
source('R/packages.R')
source('R/private_info.R')
##make a dataframe to pull info from the db
##we should probably break each row out and determine the crs by the utm_zone attribute
##lets do both phases at once to create a file for feeding back to bcfishpass
##this is weird but we know these will be dups because we check at the end of this script.
##lets pull these out of these files at the start
# dups <- c(4600183, 4600069, 4600367, 4605732, 4600070)
pscis_list <- import_pscis_all()
pscis_phase1 <- pscis_list %>% pluck('pscis_phase1')
pscis_phase2 <- pscis_list %>% pluck('pscis_phase2')
pscis_reassessments <- pscis_list %>% pluck('pscis_reassessments')
pscis_all <- pscis_list %>% pluck('pscis_all')
pscis_all_sf <- pscis_all %>%
# distinct(.keep_all = T) %>%
sf::st_as_sf(coords = c("easting", "northing"),
crs = 26911, remove = F) %>% ##don't forget to put it in the right crs buds
sf::st_transform(crs = 3005) ##convert to match the bcfishpass format
##get the road info from the database
conn <- DBI::dbConnect(
RPostgres::Postgres(),
dbname = dbname,
host = host,
port = port,
user = user,
password = password
)
#
# ##listthe schemas in the database
# dbGetQuery(conn,
# "SELECT schema_name
# FROM information_schema.schemata")
# #
# #
# # # ##list tables in a schema
dbGetQuery(conn,
"SELECT table_name
FROM information_schema.tables
WHERE table_schema='bcfishpass'")
# # # # #
# # # # # ##list column names in a table
dbGetQuery(conn,
"SELECT column_name,data_type
FROM information_schema.columns
WHERE table_name='modelled_stream_crossings'")
# test <- dbGetQuery(conn, "SELECT * FROM bcfishpass.waterfalls")
# add a unique id - we could just use the reference number
pscis_all_sf$misc_point_id <- seq.int(nrow(pscis_all_sf))
# dbSendQuery(conn, paste0("CREATE SCHEMA IF NOT EXISTS ", "test_hack",";"))
# load to database
sf::st_write(obj = pscis_all_sf, dsn = conn, Id(schema= "ali", table = "misc"))
# sf doesn't automagically create a spatial index or a primary key
res <- dbSendQuery(conn, "CREATE INDEX ON ali.misc USING GIST (geometry)")
dbClearResult(res)
res <- dbSendQuery(conn, "ALTER TABLE ali.misc ADD PRIMARY KEY (misc_point_id)")
dbClearResult(res)
dat_info <- dbGetQuery(conn, "SELECT
a.misc_point_id,
b.*,
ST_Distance(ST_Transform(a.geometry,3005), b.geom) AS distance
FROM
ali.misc AS a
CROSS JOIN LATERAL
(SELECT *
FROM fish_passage.modelled_crossings_closed_bottom
ORDER BY
a.geometry <-> geom
LIMIT 1) AS b")
##swapped out fish_passage.modelled_crossings_closed_bottom for bcfishpass.barriers_anthropogenic
##join the modelling data to our pscis submission info
dat_joined <- left_join(
select(pscis_all_sf, misc_point_id, pscis_crossing_id, my_crossing_reference, source), ##traded pscis_crossing_id for my_crossing_reference
dat_info,
by = "misc_point_id"
) %>%
mutate(downstream_route_measure = as.integer(downstream_route_measure))
dbDisconnect(conn = conn)
##we also need to know if the culverts are within a municipality so we should check
##get the road info from our database
conn <- DBI::dbConnect(
RPostgres::Postgres(),
dbname = dbname_wsl,
host = host_wsl,
port = port_wsl,
user = user_wsl,
password = password_wsl
)
# load to database
sf::st_write(obj = pscis_all_sf, dsn = conn, Id(schema= "working", table = "misc"))
dat_info <- dbGetQuery(conn,
"
SELECT a.misc_point_id, b.admin_area_abbreviation, c.map_tile_display_name
FROM working.misc a
INNER JOIN
whse_basemapping.dbm_mof_50k_grid c
ON ST_Intersects(c.geom, ST_Transform(a.geometry,3005))
LEFT OUTER JOIN
whse_legal_admin_boundaries.abms_municipalities_sp b
ON ST_Intersects(b.geom, ST_Transform(a.geometry,3005))
")
dbDisconnect(conn = conn)
##add the municipality info
dat_joined2 <- left_join(
dat_joined,
dat_info,
by = "misc_point_id"
)
# ##clean up the workspace
rm(dat_info, dat_joined, res)
#
##this no longer works because we were using the fish_passage.modelled_crossings_closed_bottom and now we don't have the rd info
##make a tibble of the client names so you can summarize in the report
##we do not need to repeat this step but this is how we make a dat to paste into a kable in rmarkdown then paste tibble as a rstudio addin so we can
##populate the client_name_abb...
##we already did this but can do it again I guess. you cut and paste the result into kable then back
##into here using addin for datapasta
# tab_rd_tenure_xref <- unique(dat_joined2$client_name) %>%
# as_tibble() %>%
# purrr::set_names(nm = 'client_name') %>%
# mutate(client_name_abb = NA)
tab_rd_tenure_xref <- tibble::tribble(
~client_name, ~client_name_abb,
"DISTRICT MANAGER ROCKY MOUNTAIN (DRM)", "FLNR DRM",
"CANADIAN FOREST PRODUCTS LTD.", "Canfor",
"MARVIN FRASER", "Marvin Fraser"
)
##add that to your dat file for later
dat_joined3 <- left_join(
dat_joined2,
tab_rd_tenure_xref,
by = 'client_name'
)
##make a dat to make it easier to see so we can summarize the road info we might want to use
dat_joined4 <- dat_joined3 %>%
mutate(admin_area_abbreviation = case_when(
is.na(admin_area_abbreviation) & (road_class %ilike% 'arterial' | road_class %ilike% 'local') ~ 'MoTi',
T ~ admin_area_abbreviation),
admin_area_abbreviation = replace_na(admin_area_abbreviation, ''),
my_road_tenure =
case_when(!is.na(client_name_abb) ~ paste0(client_name_abb, ' ', forest_file_id),
!is.na(road_class) ~ paste0(admin_area_abbreviation, ' ', stringr::str_to_title(road_class)),
!is.na(owner_name) ~ owner_name)) %>%
mutate(my_road_tenure =
case_when(distance > 100 ~ 'Unknown', ##we need to get rid of the info for the ones that are far away
T ~ my_road_tenure)) %>%
rename(geom_modelled_crossing = geom) %>%
mutate(
my_road_tenure =stringr::str_trim(my_road_tenure),
aggregated_crossings_id = case_when(!is.na(pscis_crossing_id) ~ pscis_crossing_id,
my_crossing_reference > 200000000 ~ my_crossing_reference,
T ~ my_crossing_reference + 1000000000)) %>%
sf::st_drop_geometry()
##we cannot use base R to add a column named 'source' so we choose a different name
col_new <- pscis_all_sf$source
dat_joined4$source_wkb <- col_new
##build tables to populate the pscis spreadsheets
pscis1_rd_tenure <- left_join(
select(pscis_phase1, rowid, my_crossing_reference),
dat_joined4 %>% filter(source_wkb %ilike% 'phase1') %>% select(my_crossing_reference, my_road_tenure),
by = 'my_crossing_reference'
) %>%
mutate(my_road_tenure = case_when(rowid %in% 48:52 ~ 'Teck', T ~ my_road_tenure)) ## a custom hack to account for the known teck sites (52)
##burn it all to a file we can input to pscis submission spreadsheet
pscis1_rd_tenure %>% readr::write_csv(file = paste0(getwd(), '/data/inputs_extracted/pscis1_rd_tenure.csv'))
pscis_reassessments_rd_tenure <- left_join(
select(pscis_reassessments, rowid, pscis_crossing_id),
dat_joined4 %>% filter(source_wkb %ilike% 'reassess') %>% select(pscis_crossing_id, my_road_tenure),
by = 'pscis_crossing_id'
)
##burn it all to a file we can input to pscis submission spreadsheet
pscis_reassessments_rd_tenure %>% readr::write_csv(file = paste0(getwd(), '/data/inputs_extracted/pscis_reassessmeents_rd_tenure.csv'))
##we need to qa which are our modelled crossings at least for our phase 2 crossings
pscis2_rd_tenure <- left_join(
select(pscis_phase2, rowid, aggregated_crossings_id, pscis_crossing_id, my_crossing_reference),
dat_joined4 %>% filter(source_wkb %ilike% 'phase2') %>% select(aggregated_crossings_id, my_road_tenure),
by = 'aggregated_crossings_id'
) %>%
mutate(my_road_tenure = case_when(aggregated_crossings_id == 50063 ~ 'FLNR DRM 5466', T ~ my_road_tenure)) ##not sure why this harvey xing not showing up
##burn it all to a file we can input to pscis submission spreadsheet
pscis2_rd_tenure %>% readr::write_csv(file = paste0(getwd(), '/data/inputs_extracted/pscis2_rd_tenure.csv'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.