deepNeuralNetwork.build: Build the Neural Network structure and initial values.

Description Usage Arguments Details Value Examples

View source: R/deepNN_algorithmRegressionV3.3.r

Description

'deepNeuralNetwork.build()' returns a DeepMMModel object which contains an initialized deep neural network model with the parameters specified by the user.

Usage

1
2
3
deepNeuralNetwork.build(x, y, HidenLayerNeurons = c(4, 4),
  inputNeurons = 0, outputNeurons = 0, Ai = 0.25, traindata = data,
  drawDNN = FALSE, random.seed = NA, standarization = "r")

Arguments

x

Numeric, complex, or logical vectors.

y

Numeric, complex, or logical vectors.

HidenLayerNeurons

A numeric vector representing the hidden layers. Each number specifies the number of neurons of the corresponding hidden layer.

inputNeurons

Numeric.

outputNeurons

Numeric.

Ai

Numeric.

traindata

Matrix.

drawDNN

Boolean. TRUE draw a representation of the network using ggplot. Default=FALSE.

random.seed

Numeric.

standarization

Character or list. Standarization method to be use. If a list of features (corresponding to rows in the input matrix) is supplied, a standarization feature-z-score is done. "r"=robust median z-score. "s"=standar mean z-score.

Details

This function will create and initialize a deep neural network with a random gaussian distribution the parameters specified by the user will be used to obtain the number of input neurons, number of hidden layers and number of output neurons (which will depend on the number of variables that the model is intended to estimate). The output of this function is intended to be used as the input object of the [deepNeuralNetwork.training] function.

Value

A DeepNNModel object with initialized parameters as specified by the user.

Examples

1
2
3
4
5
6
7
8
dnn.model <- deepNeuralNetwork.build(x=c(1,2,4,5),y=3, outputNeurons = 1,
                                     HidenLayerNeurons = c(30,10,3),traindata=data,
                                     random.seed = 1, drawDNN = 0)

## Not run: 
sum("a")

## End(Not run)

OscarGVelasco/DeepNeuralNetworks4R documentation built on Jan. 24, 2021, 12:42 a.m.