x = "The meaning of life is"
model = "gpt2"
device = "cpu"
tokenizer_parallelism = FALSE
logging_level = "warning"
force_return_results = FALSE
return_tensors = TRUE
return_tensors = FALSE
return_full_text = FALSE
clean_up_tokenization_spaces = FALSE
prefix = ""
handle_long_generation = "hole"
set_seed = 22L
#' Text generation
#'
#' textGeneration() predicts the words that will follow a specified text prompt. (experimental)
#' @param x (string) A variable or a tibble/dataframe with at least one character variable.
#' @param model (string) Specification of a pre-trained language model that have been trained with an
#' autoregressive language modeling objective, which includes the uni-directional models (e.g., gpt2).
#' @param device (string) Device to use: 'cpu', 'gpu', or 'gpu:k' where k is a specific device number
#' @param tokenizer_parallelism (boolean) If TRUE this will turn on tokenizer parallelism.
#' @param max_length (Integer) The maximum length the generated tokens can have. Corresponds to the length of the input prompt + `max_new_tokens`. Its effect is overridden by `max_new_tokens`, if also set. Defaults to NULL.
#' @param max_new_tokens (Integer) The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. The default value is 20.
#' @param min_length (Integer) The minimum length of the sequence to be generated. Corresponds to the length of the input prompt + `min_new_tokens`. Its effect is overridden by `min_new_tokens`, if also set. The default value is 0.
#' @param min_new_tokens (Integer) The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt. Default is NULL.
#' @param logging_level (string) Set the logging level.
#' Options (ordered from less logging to more logging): critical, error, warning, info, debug
#' @param force_return_results (boolean) Stop returning some incorrectly formatted/structured results.
#' This setting does CANOT evaluate the actual results (whether or not they make sense, exist, etc.).
#' All it does is to ensure the returned results are formatted correctly (e.g., does the question-answering
#' dictionary contain the key "answer", is sentiments from textClassify containing the labels "positive"
#' and "negative").
#' @param return_tensors (boolean) Whether or not the output should include the prediction tensors (as token indices).
#' @param return_full_text (boolean) If FALSE only the added text is returned, otherwise the full text is returned.
#' (This setting is only meaningful if return_text is set to TRUE)
#' @param clean_up_tokenization_spaces (boolean) Option to clean up the potential extra spaces in the returned text.
#' @param prefix (string) Option to add a prefix to prompt.
#' @param handle_long_generation By default, this function does not handle long generation
#' (those that exceed the model maximum length).
#' @param set_seed (Integer) Set seed.
#' (more info :https://github.com/huggingface/transformers/issues/14033#issuecomment-948385227).
#' This setting provides some ways to work around the problem:
#' None: default way, where no particular strategy is applied.
#' "hole": Truncates left of input, and leaves a gap that is wide enough to let generation happen.
#' (this might truncate a lot of the prompt and not suitable when generation exceed the model capacity)
#' @return A tibble with generated text.
#' @examples
#' \donttest{
#' # generated_text <- textGeneration("The meaning of life is")
#' # generated_text
#' }
#' @seealso see \code{\link{textClassify}}, \code{\link{textNER}},
#' \code{\link{textSum}}, \code{\link{textQA}}, \code{\link{textTranslate}}
#' @importFrom reticulate source_python
#' @importFrom tibble as_tibble_col
#' @export
textGeneration <- function(x,
model = "gpt2",
device = "cpu",
tokenizer_parallelism = FALSE,
max_length = NULL,
max_new_tokens = 20,
min_length = 0,
min_new_tokens = NULL,
logging_level = "warning",
force_return_results = FALSE,
return_tensors = FALSE,
return_full_text = TRUE,
clean_up_tokenization_spaces = FALSE,
prefix = "",
handle_long_generation = NULL,
set_seed = 202208L) {
T1_text_all <- Sys.time()
# Run python file with HunggingFace interface to state-of-the-art transformers
reticulate::source_python(system.file("python",
"huggingface_Interface3.py",
package = "text",
mustWork = TRUE
))
# Convert integer arguments explicitly for Python
## `max_length` and `max_length` are converted inside the Python function
if (!is.null(set_seed)) set_seed <- as.integer(set_seed)
# Select all character variables and make them UTF-8 coded (e.g., BERT wants it that way).
data_character_variables <- select_character_v_utf8(x)
ALL_output <- list()
# Loop over all character variables; i_variables = 1
for (i_variables in seq_len(length(data_character_variables))) {
T1_variable <- Sys.time()
hg_generated <- apply(data_character_variables[i_variables],
1,
hgTransformerGetTextGeneration,
model = model,
device = device,
tokenizer_parallelism = tokenizer_parallelism,
max_length = max_length,
max_new_tokens = max_new_tokens,
min_length = min_length,
min_new_tokens = min_new_tokens,
logging_level = logging_level,
force_return_results = force_return_results,
return_tensors = return_tensors,
return_full_text = return_full_text,
clean_up_tokenization_spaces = clean_up_tokenization_spaces,
prefix = prefix,
handle_long_generation = handle_long_generation,
set_seed = set_seed
)
# Sort output into tidy-format
if (return_tensors == FALSE) {
output1 <- dplyr::bind_rows(hg_generated[[1]][[1]][[1]])
output1
}
if (return_tensors == TRUE) {
output1 <- hg_generated
}
# Add the text variable name to variable names
x_name <- names(data_character_variables[i_variables])
names(output1) <- paste0(x_name, "_generated")
ALL_output[[i_variables]] <- output1
T2_variable <- Sys.time()
variable_time <- T2_variable - T1_variable
variable_time <- sprintf(
"Duration: %f %s",
variable_time,
units(variable_time)
)
loop_text <- paste(x_name, "completed:",
variable_time,
"\n",
sep = " "
)
message(colourise(loop_text, "green"))
}
ALL_output1 <- dplyr::bind_cols(ALL_output)
# Time to complete all variables
T2_text_all <- Sys.time()
all_time <- T2_text_all - T1_text_all
all_time <- sprintf(
"Duration to translate all variables: %f %s",
all_time,
units(all_time)
)
# Adding informative comment help(comment)
comment(ALL_output1) <- paste("Information about the textGeneration settings. ",
"model: ", model, "; ",
"time: ", all_time, "; ",
"text_version: ", packageVersion("text"), ".",
sep = "",
collapse = "\n"
)
return(ALL_output1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.