#' Named Entity Recognition. (experimental)
#' @param x (string) A variable or a tibble/dataframe with at least one character variable.
#' @param model (string) Specification of a pre-trained language model for token classification
#' that have been fine-tuned on a NER task (e.g., see "dslim/bert-base-NER").
#' Use for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).
#' @param device (string) Device to use: 'cpu', 'gpu', or 'gpu:k' where k is a specific device number
#' @param tokenizer_parallelism (boolean) If TRUE this will turn on tokenizer parallelism.
#' @param logging_level (string) Set the logging level.
#' Options (ordered from less logging to more logging): critical, error, warning, info, debug
#' @param force_return_results (boolean) Stop returning some incorrectly formatted/structured results.
#' This setting does CANOT evaluate the actual results (whether or not they make sense, exist, etc.).
#' All it does is to ensure the returned results are formatted correctly (e.g., does the question-answering
#' dictionary contain the key "answer", is sentiments from textClassify containing the labels "positive"
#' and "negative").
#' @param set_seed (Integer) Set seed.
#' @return A list with tibble(s) with NER classifications for each column.
#' @examples
#' \donttest{
#' # ner_example <- textNER("Arnes plays football with Daniel")
#' # ner_example
#' }
#' @seealso see \code{\link{textClassify}}, \code{\link{textGeneration}}, \code{\link{textNER}},
#' \code{\link{textSum}}, \code{\link{textQA}}, \code{\link{textTranslate}}
#' @importFrom reticulate source_python
#' @importFrom tibble as_tibble_col
#' @importFrom purrr map
#' @export
textNER <- function(x,
model = "dslim/bert-base-NER",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = FALSE,
set_seed = 202208L) {
T1_text_all <- Sys.time()
# Run python file with HunggingFace interface to state-of-the-art transformers
reticulate::source_python(system.file("python",
"huggingface_Interface3.py",
package = "text",
mustWork = TRUE
))
# Select all character variables and make them UTF-8 coded (e.g., BERT wants it that way).
data_character_variables <- select_character_v_utf8(x)
ALL_output <- list()
# Loop over all character variables; i_variables = 1
for (i_variables in seq_len(length(data_character_variables))) {
T1_variable <- Sys.time()
hg_NER <- purrr::map(data_character_variables[[i_variables]],
hgTransformerGetNER,
model = model,
device = device,
tokenizer_parallelism = tokenizer_parallelism,
logging_level = logging_level,
force_return_results = force_return_results,
set_seed = set_seed
)
## Sort output into tidy-format
# Name each hg_NER output to get below to work
names(hg_NER) <- paste0("variable_row", seq_len(length(hg_NER)))
# Make each portion of the objects in the list tibbles
output1 <- purrr::map(hg_NER, dplyr::bind_rows)
# Combine the tibbles to one tibble (and include NA if the result is empty)
output <- dplyr::bind_rows(output1, .id = "NamesNer") %>%
tidyr::complete(NamesNer = names(hg_NER)) %>%
select(-NamesNer)
ALL_output[[i_variables]] <- output
# Add the text variable name to variable names
x_name <- names(data_character_variables[i_variables])
T2_variable <- Sys.time()
variable_time <- T2_variable - T1_variable
variable_time <- sprintf(
"Duration: %f %s",
variable_time,
units(variable_time)
)
loop_text <- paste(x_name, "completed:",
variable_time,
"\n",
sep = " "
)
message(colourise(loop_text, "green"))
}
names(ALL_output) <- paste0(names(data_character_variables), "_NER")
# Time to complete all variables
T2_text_all <- Sys.time()
all_time <- T2_text_all - T1_text_all
all_time <- sprintf(
"Duration to predict all variables: %f %s",
all_time,
units(all_time)
)
# Adding informative comment help(comment)
comment(ALL_output) <- paste("Information about the textNER. ",
"model: ", model, "; ",
"time: ", all_time, ";",
"text_version: ", packageVersion("text"), ".",
sep = "",
collapse = "\n"
)
return(ALL_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.