#' Translation. (experimental)
#' @param x (string) The text to be translated.
#' @param source_lang (string) The input language. Might be needed for multilingual models
#' (it will not have any effect for single pair translation models). using ISO 639-1 Code,
#' such as: "en", "zh", "es", "fr", "de", "it", "sv", "da", "nn".
#' @param target_lang (string) The desired language output. Might be required for multilingual models
#' (will not have any effect for single pair translation models).
#' @param model (string) Specify a pre-trained language model that have been fine-tuned on a translation task.
#' @param device (string) Name of device to use: 'cpu', 'gpu', or 'gpu:k' where k is a specific device number
#' @param tokenizer_parallelism (boolean) If TRUE this will turn on tokenizer parallelism.
#' @param logging_level (string) Set the logging level.
#' Options (ordered from less logging to more logging): critical, error, warning, info, debug
#' @param force_return_results (boolean) Stop returning some incorrectly formatted/structured results.
#' This setting does CANOT evaluate the actual results (whether or not they make sense, exist, etc.).
#' All it does is to ensure the returned results are formatted correctly (e.g., does the question-answering
#' dictionary contain the key "answer", is sentiments from textClassify containing the labels "positive"
#' and "negative").
#' @param return_tensors (boolean) Whether or not to include the predictions' tensors as token indices in the outputs.
#' @param return_text (boolean) Whether or not to also output the decoded texts.
#' @param clean_up_tokenization_spaces (boolean) Whether or not to clean the output from potential extra spaces.
#' @param set_seed (Integer) Set seed.
#' @param max_length Set max length of text to be translated
#' @return A tibble with transalted text.
#' @examples
#' \donttest{
#' # translation_example <- text::textTranslate(
#' # Language_based_assessment_data_8[1,1:2],
#' # source_lang = "en",
#' # target_lang = "fr",
#' # model = "t5-base")
#' }
#' @seealso see \code{\link{textClassify}}, \code{\link{textGeneration}}, \code{\link{textNER}},
#' \code{\link{textSum}}, and \code{\link{textQA}}
#' @importFrom reticulate source_python
#' @importFrom tibble as_tibble_col
#' @export
textTranslate <- function(x,
source_lang = "",
target_lang = "",
model = "xlm-roberta-base",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
force_return_results = FALSE,
return_tensors = FALSE,
return_text = TRUE,
clean_up_tokenization_spaces = FALSE,
set_seed = 202208L,
max_length = 400) {
T1_text_all <- Sys.time()
# Run python file with HunggingFace interface to state-of-the-art transformers
reticulate::source_python(system.file("python",
"huggingface_Interface3.py",
package = "text",
mustWork = TRUE
))
# Select all character variables and make them UTF-8 coded (e.g., BERT wants it that way).
data_character_variables <- select_character_v_utf8(x)
ALL_output <- list()
# Loop over all character variables; i_variables = 1
for (i_variables in seq_len(length(data_character_variables))) {
T1_variable <- Sys.time()
hg_translatiton <- apply(data_character_variables[i_variables], 1,
hgTransformerGetTranslation,
source_lang = source_lang,
target_lang = target_lang,
model = model,
device = device,
tokenizer_parallelism = tokenizer_parallelism,
logging_level = logging_level,
force_return_results = force_return_results,
return_tensors = return_tensors,
return_text = return_text,
clean_up_tokenization_spaces = clean_up_tokenization_spaces,
set_seed = set_seed,
max_length = max_length
)
# Sort output into tidy-format
output1 <- dplyr::bind_rows(hg_translatiton)
# Add the text variable name to variable names
x_name <- names(data_character_variables[i_variables])
names(output1) <- paste0(
source_lang, "_to_", target_lang,
"_",
x_name
)
ALL_output[[i_variables]] <- output1
T2_variable <- Sys.time()
variable_time <- T2_variable - T1_variable
variable_time <- sprintf(
"Duration: %f %s",
variable_time,
units(variable_time)
)
loop_text <- paste(x_name, "completed:",
variable_time,
"\n",
sep = " "
)
message(colourise(loop_text, "green"))
}
ALL_output1 <- dplyr::bind_cols(ALL_output)
# Time to complete all variables
T2_text_all <- Sys.time()
all_time <- T2_text_all - T1_text_all
all_time <- sprintf(
"Duration to predict all variables: %f %s",
all_time,
units(all_time)
)
# Adding informative comment help(comment)
comment(ALL_output1) <- paste("Information about the textTranslate. ",
"model: ", model, "; ",
"time: ", all_time, ";",
"text_version: ", packageVersion("text"), ".",
sep = "",
collapse = "\n"
)
return(ALL_output1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.