Description Usage Arguments Details Value Author(s) Examples
Initialize a SlalomModel with sensible starting values for parameters before training the model.
| 1 2 3 | 
| object | a  | 
| alpha_priors | numeric(2) giving alpha and beta hyperparameters for a gamma prior distribution for alpha parameters (precision of factor weights) | 
| epsilon_priors | numeric(2) giving alpha and beta hyperparameters for a gamma prior distribution for noise precision parameters | 
| noise_model | character(1) defining noise model, defaults to "gauss" for Gaussian noise model | 
| seed | integer(1) value supplying a random seed to make results
reproducible (default is  | 
| pi_prior | numeric matrix (genes x factors) giving prior probability of a gene being active for a factor | 
| n_hidden | integer(1), number of hidden factors in model. Required if
 | 
| design | matrix of known factors (covariates) to fit in the
model. Optional if  | 
| verbose | logical(1), should messages be printed about what the function
is doing? Default is  | 
| save_init | logical(1), save the initial X values (factor states for
each cell) in the object? Default is  | 
It is strongly recommended to use newSlalomModel to
create the SlalomModel object prior to applying
initSlalom.
an 'Rcpp_SlalomModel' object
Davis McCarthy
| 1 2 3 4 5 | gmtfile <- system.file("extdata", "reactome_subset.gmt", package = "slalom")
genesets <- GSEABase::getGmt(gmtfile)
data("mesc")
model <- newSlalomModel(mesc, genesets, n_hidden = 5, min_genes = 10)
model <- initSlalom(model)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.