View source: R/13_Manage_Outliers.R
romicsOutlierEval | R Documentation |
Plots the the pmartR method for the evaluation of outliers (require the installation of the package pmartR). To remove the outlier below a certain treshold use the function Romics_outlier_remove()
romicsOutlierEval( romics_object, seed = 42, metrics = c("Correlation", "Proportion_Missing", "MAD", "Skewness"), pvalue_threshold = 0.01, label = TRUE )
romics_object |
A log transformed romics_object created using romicsCreateObject() and transformed using the function log2transform() or log10transform() |
seed |
An integer of length 1, by default 42 will be used |
metrics |
A character vector containing the following terms to indicate which parameters to use for the filtering of the data : 'Correlation', 'Proportion_Missing','MAD', 'Skewness'. By defaults all parameters will be used. |
pvalue_threshold |
A numeric vector of lenght 1 indicating the pvalue threshold to be used. |
label |
Either TRUE or FALSE to indicate if the labels have to be plotted. |
This function requires the package 'pmartR' to be installed and loaded to be excecuted. It will calculate and plot the samples to be filtered out using the function Romics_outlier_eval().
This function will print the pmartR filtering details and will return 2 plots the first one is a scatter plot of the pvalue by log2(Robust Mahalanobis Distance) the second one is a scatter plot of the log2(Robust Mahalanobis Distance) per sample.
Geremy Clair
Matzke, M., Waters, K., Metz, T., Jacobs, J., Sims, A., Baric, R., Pounds, J., and Webb-Robertson, B.J. (2011), Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics. 27(20): 2866-2872.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.