View source: R/13_Manage_Outliers.R
romicsOutlierRemove | R Documentation |
Removes outliers below a certain pvalue threshold. The pmartR method for the removal of outliers is used (require the installation of the package pmartR). The evaluation of the outlier removal can be done prior to apply this function using the function Romics_outlier_eval().
romicsOutlierRemove( romics_object, seed = 42, metrics = c("Correlation", "Proportion_Missing", "MAD", "Skewness"), pvalue_threshold = 0.01 )
romics_object |
A log transformed romics_object created using romicsCreateObject() and transformed using the function log2transform() or log10transform() |
seed |
An integer of length 1, by default 42 will be used |
metrics |
A character vector containing the following terms to indicate which parameters to use for the filtering of the data : 'Correlation', 'Proportion_Missing','MAD', 'Skewness'. By defaults all parameters will be used. |
pvalue_threshold |
A numeric vector of lenght 1 indicating the pvalue threshold to be used. |
This function requires the package 'pmartR' to be installed and loaded to be excecuted. It will calculate and plot the samples to be filtered out using the function Romics_outlier_eval().
This function will print the pmartR filtering details and will return 2 plots the first one is a scatter plot of the pvalue by log2(Robust Mahalanobis Distance) the second one is a scatter plot of the log2(Robust Mahalanobis Distance) per sample.
Geremy Clair
Matzke, M., Waters, K., Metz, T., Jacobs, J., Sims, A., Baric, R., Pounds, J., and Webb-Robertson, B.J. (2011), Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics. 27(20): 2866-2872.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.