knitr::opts_chunk$set(echo = TRUE) require(dplyr) require(amlresistancenetworks)
This package has formatted the Gilteritnib-treated AML cells into a tidied data frame so they can be easily processed. Here is a summary of the samples collected so that we can better analyze them.
Samples collected
gilt.data<-readRDS(system.file('gilteritinibData.Rds',package='amlresistancenetworks')) prot.univ<-unique(gilt.data$Gene) #view as table samps<-gilt.data%>% dplyr::select(c(Sample,ligand,CellLine,treatment))%>%distinct() DT::datatable(samps)
Here we compare early to late treatments
late.data<-gilt.data%>% subset(treatment%in%(c('None','Late Gilteritinib')))%>% subset(ligand=='None')%>% dplyr::select(Gene,Sample,CellLine,treatment,value) late.diffs<-amlresistancenetworks::computeFoldChangePvals(late.data,control='None',conditions=c("Late Gilteritinib")) molm.late.diffs<-amlresistancenetworks::computeFoldChangePvals(subset(late.data,CellLine=='MOLM14'),control='None',conditions=c("Late Gilteritinib")) mv411.late.diffs<-amlresistancenetworks::computeFoldChangePvals(subset(late.data,CellLine=='MV411'),control='None',conditions=c("Late Gilteritinib")) mean.diffs<-rbind(mutate(late.diffs,CellLine='Both'), mutate(molm.late.diffs,CellLine='MOLM14'), mutate(mv411.late.diffs,CellLine='MV411')) #count the proteins at our significance threshold prot.counts=mean.diffs%>% subset(p_adj<0.05)%>% group_by(Condition,CellLine)%>% summarize(`ProteinsDiffEx`=n_distinct(Gene)) DT::datatable(prot.counts)
tot.diff<-late.diffs%>%dplyr::select(Gene,value=condition_to_control) DT::datatable(subset(late.diffs,p_adj<0.05)) combined.diff=computeGSEA(tot.diff,prot.univ) if(nrow(as.data.frame(combined.diff))>0){ enrichplot::ridgeplot(combined.diff,showCategory=25)+ggplot2::ggtitle("GO Terms for all early vs late") ggplot2::ggsave('bothCells_early_vs_late_GO.png',width=16,height=8) }
Now separate out by cell types to make sure that the effects are the same.
genes.with.values=mv411.late.diffs%>% ungroup()%>% dplyr::select(Gene,value=condition_to_control) DT::datatable(subset(mv411.late.diffs,p_adj<0.05)) mv411.late=computeGSEA(genes.with.values,prot.univ) enrichplot::ridgeplot(mv411.late,showCategory=25)+ggplot2::ggtitle("GO Terms for MV411 Early vs Late") ggplot2::ggsave('MV411_early_late_GO.png',width=16,height=8)
genes.with.values=molm.late.diffs%>% ungroup()%>% dplyr::select(Gene,value=condition_to_control) molm.late=computeGSEA(genes.with.values,prot.univ) enrichplot::ridgeplot(molm.late,showCategory=25)+ggplot2::ggtitle("GO Terms for MOLM Early vs Late") ggplot2::ggsave('Molm14_early_late_GO.png',width=16,height=8) DT::datatable(subset(molm.late.diffs,p_adj<0.05))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.