Description Usage Arguments Value Author(s) Examples
This function provide a report showing all outlier values for each numerical fields. The function will try to automatically determine the type of distribution (between Normal and Log-Normal) based on the difference between mean and median between untransformed normalized and log transformed normalized distribution.
1 2 3 4 5 6 7 | surveyOutliers(
ds = NULL,
enumeratorID = NULL,
sdval = 2,
reportingColumns = c(enumeratorID, uniqueID),
enumeratorCheck = FALSE
)
|
ds |
dataset containing the survey (from kobo): data.frame |
enumeratorID |
name of the field where the enumerator ID is stored: string |
sdval |
(Optional, by default set to 2) number of standard deviation for which the data within is considered as acceptable: integer |
reportingColumns |
(Optional, by default it is built from the enumeratorID and the UniqueID) name of the columns from the dataset you want in the result: list of string (c('col1','col2',...)) |
enumeratorCheck |
(Optional, by default set to FALSE) specify if the report has to be displayed for each enumerator or not: boolean (TRUE/FALSE) |
uniqueID |
name of the field where the survey unique ID is stored: string |
dst same dataset as the inputed one but with survey marked for deletion if errors are found and delete=TRUE (or NULL)
ret_log list of the errors found (or NULL)
var a list of value (or NULL)
graph graphical representation of the results (or NULL)
Yannick Pascaud
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | {
ds <- HighFrequencyChecks::sample_dataset
enumeratorID <- "enumerator_id"
uniqueID <- "X_uuid"
reportingColumns <- c(enumeratorID, uniqueID)
sdval<-2
list[dst,ret_log,var,graph] <- surveyOutliers(ds=ds,
enumeratorID=enumeratorID,
sdval=sdval,
reportingColumns=reportingColumns,
enumeratorCheck=FALSE)
head(ret_log,10)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.