#' calcLongTermTrendSimple
#'
#' this function just does a basic long-term trend calculation on a single vector.
#' calcLongTermTrend() applies the same basic calculation iteratively for each year and stock in a data frame (Year X Stock) using only data prior to that year.
#' @param vec.in a vector of raw values. NA are possible, but will result in NA trend for any recent time window that includes one or more NA
#' @param gen.in use the last gen.in values for the "recent" avg
#' @param avg.type "mean","geomean", or "median"
#' @param min.lt.yrs return NA if don't have at least this many years to calculate longterm avg
#' @param recent.excl if TRUE, then don't use the values from the recent gen as part of the LT avg
#' @keywords trend
#' @export
#' @examples
#' calcLongTermTrendSimple(vec.in = exampleData$Stock1, gen.in = 4,min.lt.yrs = 20,
#' avg.type = "geomean", tracing=FALSE,recent.excl = FALSE)
calcLongTermTrendSimple <- function(vec.in,gen.in = 4,min.lt.yrs = 20, avg.type = "geomean", tracing=FALSE,
recent.excl = FALSE){
if(tracing){ print("vec.in ------"); print(vec.in)}
if(sum(!is.na(vec.in))< min.lt.yrs){lt.trend <- NA ; recent.avg <- NA; longterm.avg <- NA }
if(sum(!is.na(vec.in))>= min.lt.yrs){
recent.vals <- vec.in[(length(vec.in) - gen.in +1) :length(vec.in)]
if(!recent.excl){longterm.vals <- vec.in}
if(recent.excl){ longterm.vals <- vec.in[1: (length(vec.in) - gen.in)] }
if(tracing){print(recent.vals); print(longterm.vals )}
if(tolower(avg.type) == "mean"){
recent.avg <- mean(recent.vals, na.rm=FALSE) # if any NA in a column, get NA
longterm.avg <- mean(longterm.vals, na.rm=TRUE) # ignore NA
}
if(tolower(avg.type) == "geomean"){
# If any zeroes in the data, then this version generates longterm.avg = 0 and Longtrend metrics = Inf
#recent.avg <- exp(mean(log(recent.vals), na.rm=FALSE))
#longterm.avg <- exp(mean(log(longterm.vals), na.rm=TRUE))
# using the strategy from Perry et al 2021 (https://journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0245941)
# as suggested by Carrie Holt at https://github.com/SOLV-Code/MetricsCOSEWIC/issues/15
tmp.vals <- longterm.vals
zero.idx <- tmp.vals == 0
zero.idx[is.na(zero.idx)] <- FALSE
tmp.vals[zero.idx] <- runif(sum(zero.idx,na.rm = TRUE),0.00000001, min(longterm.vals[!zero.idx],na.rm = TRUE)/2)
recent.avg <- exp(mean(log(recent.vals), na.rm=FALSE))
longterm.avg <- exp(mean(log(tmp.vals), na.rm=TRUE))
}
if(tolower(avg.type) == "median"){
recent.avg <- median(recent.vals, na.rm=FALSE) # if any NA in a column, get NA
longterm.avg <- median(longterm.vals, na.rm=TRUE) # ignore NA
}
lt.trend<- round(recent.avg/longterm.avg *100)
} # end if have enough data
return(list(lt.trend= lt.trend, recent.avg = recent.avg, longterm.avg = longterm.avg))
} # end calcLongTermTrendSimple function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.