estmeta: Meta-analysis of Beta (the parameters or coefficients...

Description Usage Arguments Value Examples

View source: R/Estmeta.R

Description

Fixed effect model or DerSimonian and Laird-based Random effect model for standard meta-analysis of Beta (the parameters or coefficients) estimated from regression models (e.g linear regression or generalised linear regression models).

Usage

1
estmeta(Beta, u, l, test = c("FIXED", "RANDOM"), conf.level = 0.95)

Arguments

Beta

A numeric vector of Beta (the parameters or coefficients) estimated from the individual studies

u

A numeric vector of the upper bound of the confidence interval of the Beta reported from the individual studies.

l

A numeric vector of the lower bound of the confidence interval of the Beta reported from the individual studies.

test

Logical, indicating the statistical method to be used. "FIXED" for the fixed effect odel and "RANDOM" for the random effect model.

conf.level

Coverage for confidence interval

Value

Object of class "metaan.ra". A list that print the output from the priskran function. The following could be found from the list :

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
study <- c("Canada", "Northern USA", "Chicago", "Georgia","Puerto", "Comm",
"Madanapalle", "UK", "South Africa", "Haiti", "Madras")
beta<- c(0.205, 0.411, 0.254, 1.562, 0.712, 0.983, 0.804, 0.237, 0.625,
0.198, 1.012)
lower_ci <- c(0.086, 0.134, 0.149, 0.374, 0.573, 0.582, 0.516, 0.179, 0.393,
0.078, 0.895)
upper_ci <- c(0.486, 1.257, 0.431, 6.528, 0.886, 1.659, 1.254,
0.312, 0.996, 0.499, 1.145)

donne <- data.frame(cbind(study, beta, lower_ci, upper_ci))

donne$beta <- as.numeric(as.character(donne$beta))
donne$upper_ci <- as.numeric(as.character(donne$upper_ci))
donne$lower_ci <- as.numeric(as.character(donne$lower_ci))


estmeta(Beta=donne$Risk, u=donne$upper_ci, l=donne$lower_ci, test="RANDOM")
estmeta(Beta=donne$Risk, u=donne$upper_ci, l=donne$lower_ci, test="FIXED")

Package-Metaan-Rep/Metaan documentation built on Dec. 28, 2021, 6:40 a.m.