risksens: Sensitivity analysis for relative risk (or odds ratio)...

Description Usage Arguments Value Author(s) Examples

View source: R/risksens.R

Description

Fixed or Random effect model could be used for the sensitivity analysis computation. The risk estimate could be e.g relative risk (RR), odds ratio (OR) or hazard ratio (HR).

In the sensitivity analysis, each individual study is removed one at a time and the summarized estimate is computed to access the effect of the removed study on the overall pooled estimate.

Usage

1
2
3
4
5
6
7
8
9
risksens(
  study,
  rr,
  u,
  l,
  form = c("Log", "nonLog"),
  test = c("FIXED", "RANDOM"),
  conf.level = 0.95
)

Arguments

study

A vector (or column for dataframe, matrix) specifying the column reporting the author's name or the individual study's name

rr

A numeric vector of the risk estimated from the individual studies

u

A numeric vector of the upper bound of the confidence interval of the risk estimated from the individual studies.

l

A numeric vector of the lower bound of the confidence interval of the risk estimated from the individual studies.

form

Logical, indicating the scale of the data. If Log, then the original data are in logarithmic scale.

test

Logical, indicating the statistical method to be used. The user have the choice between "FIXED" for the fixed effect model, and "RANDOM" for the random effect model.

conf.level

Coverage for confidence interval

Value

Object of class "data.frame" that print the output from the risksens function. The following could be found from the output :

Author(s)

Kossi Abalo

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
study <- c("Canada", "Northern USA", "Chicago", "Georgia","Puerto", "Comm", "Madanapalle",
"UK", "South Africa", "Haiti", "Madras")
Risk <- c(0.205, 0.411, 0.254, 1.562, 0.712, 0.983, 0.804, 0.237, 0.625, 0.198, 1.012)
lower_ci <- c(0.086, 0.134, 0.149, 0.374, 0.573, 0.582, 0.516, 0.179, 0.393, 0.078, 0.895)
upper_ci <- c(0.486, 1.257, 0.431, 6.528, 0.886, 1.659, 1.254, 0.312, 0.996,
0.499, 1.145)

donne <- data.frame(cbind(study, Risk, lower_ci, upper_ci))

donne$Risk <- as.numeric(as.character(donne$Risk))
donne$upper_ci <- as.numeric(as.character(donne$upper_ci))
donne$lower_ci <- as.numeric(as.character(donne$lower_ci))

# on the log form
donne$ln_risk <- log(donne$Risk)
donne$ln_lower_ci <- log(donne$lower_ci)
donne$ln_upper_ci <- log(donne$upper_ci)

risksens(study=donne$study, rr=donne$ln_risk, u=donne$ln_upper_ci, l=donne$ln_lower_ci,
form="Log", test = "FIXED")

risksens(study=donne$study, rr=donne$ln_risk, u=donne$ln_upper_ci, l=donne$ln_lower_ci,
form="Log", test = "RANDOM")

risksens(study=donne$study, rr=donne$Risk, u=donne$upper_ci, l=donne$lower_ci,
form="nonLog", test = "FIXED")

risksens(study=donne$study, rr=donne$Risk, u=donne$upper_ci, l=donne$lower_ci,
form="nonLog", test = "RANDOM")

Package-Metaan-Rep/Metaan documentation built on Dec. 28, 2021, 6:40 a.m.