##### INSTALLING AND LOADING PACKAGE ####
#if (!require(Carex.bipolar)) devtools::install_github("Pakillo/Carex.bipolar")
library(Carex.bipolar) # load to access package functions
#### RECREATE PACKAGE ENVIRONMENT ######################
good.date <- "2017-09-19"
## Run line below to recreate package environment for that date ##
## Packages will be downloaded to a local folder ("~/.checkpoint")
# checkpoint::checkpoint(snapshotDate = good.date, use.knitr = TRUE)
## Now install other external packages (not on CRAN)
## NB. pkgs installed to .libPaths() = "~/.checkpoint"
## so this doesn't mess with local user library
# install.packages("dependencies/rSDM_0.3.7.tar.gz", repos = NULL, type = "source")
# Run line below to delete the folder ("~/.checkpoint") containing these package versions
# unlink("~/.checkpoint", recursive = FALSE)
# R version used: 3.4.1
# Restart R session to come back to standard user library afterwards
#######################################################
### Data prep (run only once) ###
#source("data-raw/dataprep.R")
#source("data-raw/clip_bioregions.R")
###################################################
### ANALYSES ####
spp <- c("allspp", "canescens", "macloviana", "magellanica", "maritima",
"microglochin")
### Use ENMeval to choose best models ###
for (i in spp) {
species <- i
render(input = "analyses/fullspp_ENMeval.Rmd",
output_dir = file.path("analyses/output/fullspp_ENMeval", species),
output_file = paste0(species, ".html"))
}
#### Make predictions for present and future based on best Maxent models ####
for (i in spp) {
species <- i
render(input = "analyses/fullspp_predictions.Rmd",
output_dir = file.path("analyses/output/fullspp_predictions", species),
output_file = paste0(species, ".html"))
}
#### Fig 1: occurrence map ####
render("manuscript/figures/Fig1_occmap.Rmd")
#### Fig Present Suitability ####
render("manuscript/figures/Fig_suitability_present_code.Rmd")
#### Figs Future Suitability ####
render("manuscript/figures/Fig_suitability_2050_code.Rmd")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.