View source: R/01-estimateMap.R
estimateMap3D | R Documentation |
Note regarding IndependentType = "categorical": This follows a one vs. all approach using logistic regression, which in the Bayesian case is performed using a Polya-Gamma latent variable during Gibbs-sampling (https://arxiv.org/abs/1205.0310).
estimateMap3D(
data,
independent,
Longitude,
Latitude,
DateOne,
DateTwo,
center = c("Europe", "Pacific"),
IndependentType = "numeric",
Site = "",
DateType = "Interval",
dateUnc = "uniform",
independentUncertainty = "",
CoordType = "decimal degrees",
burnin = 500,
iter = 2000,
nChains = 1,
splineType = 1,
K = 25,
KT = 10,
Bayes = FALSE,
penalty = 1,
smoothConst = 1,
outlier = FALSE,
outlierValue = 4,
outlierD = FALSE,
outlierValueD = 4,
restriction = c(-90, 90, -180, 180),
sdVar = FALSE,
correctionPac = FALSE,
thinning = 2
)
data |
data.frame: data |
independent |
character: name of independent variable |
Longitude |
character: name of longitude variable |
Latitude |
character: name of latitude variable |
DateOne |
character: name of date variable 1 (lower interval point / mean / single point) |
DateTwo |
character: name of date variable 2 (upper interval point / sd / ) |
center |
(character) center to shift data to, either "Europe" or "Pacific" |
IndependentType |
character: type ("numeric" or "categorical") of independent variable |
Site |
character: name of site variable (optional) |
DateType |
character: one of "Interval", "Mean + 1 SD uncertainty" and "Single Point" |
dateUnc |
character: one of "uniform", "normal", "point" |
independentUncertainty |
character: uncertainty of independent variable in sd (optional) |
CoordType |
character: type of longitude/latitude coordinates. One of "decimal degrees", "degrees minutes seconds" and "degrees decimal minutes" |
burnin |
integer: number of burn-in iterations for Bayesian model (default = 500) |
iter |
integer: number of iterations for Bayesian model (default = 2000) |
nChains |
integer: number of chains for Bayesian model (default = 1) |
splineType |
numeric: 1 for classical tprs, 2 for spherical spline |
K |
integer: number of basis functions for sos (spline on a sphere) |
KT |
integer: number of basis functions for tprs (thin plate regression spline) |
Bayes |
boolean: Bayesian model TRUE/FALSE? |
penalty |
numeric: 1 for constant extrapolation, 2 for linear extrapolation |
smoothConst |
numeric: adjust smoothing parameter(>0) for Bayesian model (optional) |
outlier |
boolean: outlier removal TRUE/FALSE |
outlierValue |
numeric: if outlier removal is TRUE, threshold for removals in sd |
outlierD |
boolean: data outlier removal TRUE/FALSE |
outlierValueD |
numeric: if outlierD removal is TRUE, threshold for removals in sd |
restriction |
numeric vector: spatially restricts model data 4 entries for latitude (min/max) and longitude(min/max) |
sdVar |
boolean: variable standard deviation |
correctionPac |
boolean: correction (data augmentation) for pacific centering |
thinning |
numeric: mcmc thinning for bayesian models |
## Not run:
# load data
data <- readRDS(system.file("extData", "exampleData.Rds", package = "DSSM"))
# estimate model-map
map <- estimateMap3D(data = data, independent = "d13C", Longitude = "longitude",
Latitude = "latitude", DateOne = "dateLower", DateTwo = "dateUpper", Site = "site")
# Plot the map
plotMap3D(model = map, time = median(data$dateLower, na.rm = TRUE))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.