estimateMapSpread: Estimates spatial spread model (first or latest occurence of...

View source: R/01-estimateMap.R

estimateMapSpreadR Documentation

Estimates spatial spread model (first or latest occurence of event)

Description

Estimates spatial spread model (first or latest occurence of event)

Usage

estimateMapSpread(
  data,
  Longitude,
  Latitude,
  DateOne,
  DateTwo,
  center = c("Europe", "Pacific"),
  burnin = 500,
  iter = 2000,
  nChains = 1,
  K = 50,
  MinMax = "Max",
  DateType = "Interval",
  dateUnc = "mid point",
  CoordType = "decimal degrees",
  smoothConst = 1,
  penalty = 1,
  splineType = 2,
  shinyApp = FALSE,
  outlier = FALSE,
  outlierValue = 4,
  outlierD = FALSE,
  outlierValueD = 4,
  restriction = c(-90, 90, -180, 180),
  correctionPac = FALSE,
  thinning = 2,
  spreadQ = 0.01,
  minValue = -Inf
)

Arguments

data

data.frame: data

Longitude

character: name of longitude variable

Latitude

character: name of latitude variable

DateOne

character: name of date variable 1 (lower interval point / mean / single point)

DateTwo

character: name of date variable 2 (upper interval point / sd / )

center

(character) center to shift data to, either "Europe" or "Pacific"

burnin

integer: number of burn-in iterations for Bayesian model (default = 500)

iter

integer: number of iterations for Bayesian model (default = 2000)

nChains

integer: number of chains for Bayesian model (default = 1)

K

integer: number of basis functions for tprs (thin plate regression spline)

MinMax

character: estimate minimum or maximum of distribution. choices: "Max", "Min"

DateType

character: one of "Interval", "Mean + 1 SD uncertainty" and "Single Point"

dateUnc

character: one of "uniform", "normal", "point"

CoordType

character: type of longitude/latitude coordinates. One of "decimal degrees", "degrees minutes seconds" and "degrees decimal minutes"

smoothConst

numeric: adjust smoothing parameter for Bayesian model (optional)

penalty

numeric: 1 for constant extrapolation, 2 for linear extrapolation

splineType

numeric: 1 for classical tprs, 2 for spherical spline

shinyApp

boolean: If called inside shinyApp: Set to true

outlier

boolean: outlier removal TRUE/FALSE

outlierValue

numeric: if outlier removal is TRUE, threshold for removals in sd

outlierD

boolean: data outlier removal TRUE/FALSE

outlierValueD

numeric: if outlierD removal is TRUE, threshold for removals in sd

restriction

numeric vector: spatially restricts model data 4 entries for latitude (min/max) and longitude(min/max)

correctionPac

boolean: correction (data augmentation) for pacific centering

thinning

numeric: mcmc thinning for bayesian models

spreadQ

numeric: exceedance quantile as buffer

minValue

numeric: minValue restriction

Examples

## Not run: 
# load data
data <- readRDS(system.file("extData", "exampleData.Rds", package = "DSSM"))
# estimate model-map
map <- estimateMapSpread(data = data, Longitude = "longitude",
Latitude = "latitude", DateOne = "dateLower", DateTwo = "dateUpper", iter = 200)
# Plot the map
plotMap(model = map)

## End(Not run)


Pandora-IsoMemo/iso-app documentation built on Oct. 11, 2024, 11:04 a.m.