#' Build XGboost Model
#' @export fit.xgboost
#' @param x A training dataset with calculated Chemical Descriptors
#' @return Returns a trained model ready to predict
#' @examples
#' \donttest{
#' xgb <- fit.xgboost(training)}
fit.xgboost <- function(x) {
# set up train control for 10 times cross validation
cv.ctrl <- caret::trainControl(method = "cv", number = 10)
# These are the tune grid parameters
xgb.grid <- base::expand.grid(nrounds = c(300, 400, 500, 600,
700, 800, 1000),
max_depth = c(2, 3, 4, 5),
eta = c(0.01, 0.02),
gamma = c(1),
colsample_bytree = c(0.5),
subsample = c(0.5),
min_child_weight = c(10))
print("Computing model Xgboost ... Please wait ...")
# Model training using the above parameters
set.seed(101)
model_xgb <- caret::train(RT ~ .,
data = x,
method = "xgbTree",
metric = "RMSE",
trControl = cv.ctrl,
tuneGrid = xgb.grid)
print("End training")
return(model_xgb)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.