colWeightedSds,DelayedMatrix-method | R Documentation |
Calculates the weighted standard deviation for each row (column) of a matrix-like object.
## S4 method for signature 'DelayedMatrix'
colWeightedSds(
x,
w = NULL,
rows = NULL,
cols = NULL,
na.rm = FALSE,
force_block_processing = FALSE,
...,
useNames = TRUE
)
## S4 method for signature 'DelayedMatrix'
colWeightedVars(
x,
w = NULL,
rows = NULL,
cols = NULL,
na.rm = FALSE,
force_block_processing = FALSE,
...,
useNames = TRUE
)
## S4 method for signature 'DelayedMatrix'
rowWeightedSds(
x,
w = NULL,
rows = NULL,
cols = NULL,
na.rm = FALSE,
force_block_processing = FALSE,
...,
useNames = TRUE
)
## S4 method for signature 'DelayedMatrix'
rowWeightedVars(
x,
w = NULL,
rows = NULL,
cols = NULL,
na.rm = FALSE,
force_block_processing = FALSE,
...,
useNames = TRUE
)
x |
A NxK DelayedMatrix. |
w |
A |
rows , cols |
A |
na.rm |
If |
force_block_processing |
|
... |
Additional arguments passed to specific methods. |
useNames |
If |
The S4 methods for x
of type matrix
,
array
, table
, or numeric
call
matrixStats::rowWeightedSds
/
matrixStats::colWeightedSds
.
Returns a numeric
vector
of length N (K).
Peter Hickey
matrixStats::rowWeightedSds()
and
matrixStats::colWeightedSds()
which are used when the input is a matrix
or numeric
vector.
See also rowSds for the corresponding unweighted function.
# A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),
as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),
dim = c(5, 3))
colWeightedSds(dm_Rle, w = 1 / rowMeans2(dm_Rle))
# Specifying weights inversely proportional to rowwise means
colWeightedVars(dm_Rle, w = 1 / rowMeans2(dm_Rle))
# Specifying weights inversely proportional to columnwise means
rowWeightedSds(dm_Rle, w = 1 / colMeans2(dm_Rle))
# Specifying weights inversely proportional to columnwise means
rowWeightedVars(dm_Rle, w = 1 / colMeans2(dm_Rle))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.