#' @export
makeRLearner.classif.tuneRanger = function() {
makeRLearnerClassif(
cl = "classif.tuneRanger",
package = "tuneRanger",
par.set = makeParamSet(
makeUntypedLearnerParam(id = "measure", default = multiclass.brier),
makeIntegerLearnerParam(id = "iters", lower = 1L, default = 70L),
makeIntegerLearnerParam(id = "iters.warmup", lower = 1L, default = 30L),
makeNumericLearnerParam(id = "time.budget", lower = 1L),
makeIntegerLearnerParam(id = "num.threads", lower = 1L, when = "both", tunable = FALSE),
makeIntegerLearnerParam(id = "num.trees", lower = 1L, default = 500L),
makeUntypedLearnerParam(id = "tune.parameters", default = c("mtry", "min.node.size", "sample.fraction")),
makeUntypedLearnerParam(id = "parameters", default = list(replace = FALSE, respect.unordered.factors = "order"))
),
properties = c("twoclass", "multiclass", "prob", "numerics", "factors", "ordered", "weights"),
name = "Random Forests",
short.name = "tuneRanger",
note = "By default, internal parallelization is switched off (`num.threads = 1`), `verbose` output is disabled, `respect.unordered.factors` is set to `order`. All settings are changeable."
)
}
#' @export
trainLearner.classif.tuneRanger = function(.learner, .task, .subset, .weights = NULL, ...) {
tuneRanger::tuneRanger(task = subsetTask(.task, .subset), build.final.model = TRUE, ...)$model
}
#' @export
predictLearner.classif.tuneRanger = function(.learner, .model, .newdata, ...) {
model = .model$learner.model$learner.model
p = predict(object = model, data = .newdata, ...)
if (.learner$predict.type == "response") {
classes = factor(colnames(p$predictions)[apply(p$predictions, 1, which.max)], levels = colnames(p$predictions))
return(classes)
} else {
return(p$predictions)
}
}
#' #' @export
#' getOOBPredsLearner.classif.ranger = function(.learner, .model) {
#' .model$learner.model$predictions
#' }
#'
#' #' @export
#' getFeatureImportanceLearner.classif.ranger = function(.learner, .model, ...) {
#' has.fiv = .learner$par.vals$importance
#' if (is.null(has.fiv) || has.fiv == "none") {
#' stop("You must set the learners parameter value for importance to
#' 'impurity' or 'permutation' to compute feature importance")
#' }
#' mod = getLearnerModel(.model)
#' ranger::importance(mod)
#' }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.