makeRLearner.classif.caretRanger = function() {
makeRLearnerClassif(
cl = "classif.caretRanger",
package = "caret",
par.set = makeParamSet(
),
properties = c("twoclass", "multiclass", "prob", "numerics", "factors", "ordered", "featimp", "weights"),
name = "Random Forests",
short.name = "caretRanger",
note = "By default, internal parallelization is switched off (`num.threads = 1`), `verbose` output is disabled, `respect.unordered.factors` is set to `TRUE`. All settings are changeable."
)
}
trainLearner.classif.caretRanger = function(.learner, .task, .subset, .weights = NULL, ...) {
data = getTaskData(.task, subset = .subset, target.extra = TRUE)
levels(data$target) = paste0("X", levels(data$target))
caret::train(data$data, data$target, method = "ranger", weights = .weights, num.trees = 2000, num.threads = 10, trControl = caret::trainControl(classProbs = (.learner$predict.type == "prob")))
}
predictLearner.classif.caretRanger = function(.learner, .model, .newdata, ...) {
model = .model$learner.model
type = ifelse(.learner$predict.type == "prob", "prob", "raw")
p = predict(object = model, newdata = .newdata, type = type, ...)
if (type == "prob") {
colnames(p) = substr(colnames(p), 2, 1000)
p = as.matrix(p)
} else {
levels(p) = substr(levels(p), 2, 1000)
}
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.