library(mlr)
library(ranger)
context("Output check")
test_that("classification ranger", {
library(tuneRanger)
library(mlr)
# A mlr task has to be created in order to use the package
# the already existing iris task is used here
unlink("./optpath.RData")
iris.task = makeClassifTask(data = iris, target = "Species")
estimateTimeTuneRanger(iris.task, num.trees = 100, num.threads = 1)
# with few iterations
res = tuneRanger(iris.task, measure = list(multiclass.brier), num.trees = 1000, num.threads = 1, iters = 5, iters.warmup = 5)
expect_true(is.data.frame(res$results))
expect_true(is.data.frame(res$recommended.pars))
expect_true(class(res$model) == "WrappedModel")
# with time budget
res = tuneRanger(iris.task, measure = list(multiclass.brier), num.trees = 1000, num.threads = 1, time.budget = 5)
expect_true(is.data.frame(res$results))
})
test_that("tuneMtryFast", {
library(tuneRanger)
library(mlr)
library(survival)
## test tuneMtryFast
learner = makeLearner("classif.tuneMtryFast", predict.type = "prob")
mod = train(learner, iris.task)
preds = predict(mod, newdata = getTaskData(iris.task))
expect_data_frame(preds$data)
learner = makeLearner("regr.tuneMtryFast")
mod = train(learner, bh.task)
preds = predict(mod, newdata = getTaskData(bh.task))
expect_data_frame(preds$data)
learner = makeLearner("surv.tuneMtryFast")
mod = train(learner, lung.task)
preds = predict(mod, newdata = getTaskData(lung.task))
expect_data_frame(preds$data)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.