#' Apply Odds Ratio
#'
#' Apply an odds ratio to proportionally increase or reduce
#' the odds of survival
#'
#' @name apply_or
#' @rdname apply_or
#' @export
#'
#' @param dist a survival distribution
#' @param or an odds ratio to be applied to survival distribution
#' @param log_or optional argument (defaults to `FALSE`) to indicate that
#' provided odds ratio is on log scale
#' @return A `surv_po` object.
#'
#' @examples
#'
#' dist1 <- define_surv_param("exp", rate = 0.25)
#' po_dist <- apply_or(dist1, 1.12)
#' @tests
#' dist1 <- define_surv_param("exp", rate = 0.25)
#' expect_equal(
#' apply_or(dist1, 0.5),
#' create_list_object(c('surv_po', 'surv_dist'), dist = dist1, or = 0.5)
#' )
#' expect_equal(
#' apply_or(dist1, 0.5),
#' apply_or(apply_or(dist1, 0.5), 1)
#' )
#' expect_equal(
#' apply_or(dist1, 0.25),
#' apply_or(apply_or(dist1, 0.5), 0.5)
#' )
#' expect_equal(
#' apply_or(dist1, 0.5),
#' apply_or(dist1, log(0.5), TRUE)
#' )
#' expect_error(
#' apply_or('foo', 0.5),
#' 'Error applying odds ratio, invalid survival distribution provided.',
#' fixed = TRUE
#' )
#' expect_error(
#' apply_or(dist1, 'foo'),
#' 'Error applying odds ratio, "or" must be numeric.',
#' fixed = TRUE
#' )
#' expect_error(
#' apply_or(dist1, NA_real_),
#' 'Error applying odds ratio, "or" cannot be NA.',
#' fixed = TRUE
#' )
#' expect_error(
#' apply_or(dist1, -2),
#' 'Error applying odds ratio, "or" cannot be negative.',
#' fixed = TRUE
#' )
apply_or <- function(dist, or, log_or = FALSE) {
# Check that dist is a valid type
is_surv_dist <- is_surv_dist(dist)
if (!is_surv_dist) {
err <- get_and_populate_message('apply_or_wrong_type_dist')
stop(err, call. = show_call_error())
}
# Check that hr is numeric
is_numeric <- any(c('integer', 'numeric') %in% class(or))
if (!is_numeric) {
err <- get_and_populate_message('apply_or_wrong_type_or')
stop(err, call. = show_call_error())
}
# If log_or is specified then exponentiate it
if (log_or) {
or <- exp(or)
}
# Check that or isn't missing
missing_or <- any(is.na(or))
if (missing_or) {
err <- get_and_populate_message('apply_or_missing_or')
stop(err, call. = show_call_error())
}
or <- truncate_param('or', or)
# If or equals one then noop
if (or == 1) {
return(dist)
}
# Check that or >= 0
invalid_or <- or < 0
if (invalid_or) {
err <- get_and_populate_message('apply_or_invalid_or')
stop(err, call. = show_call_error())
}
# If the baseline distribution is of type surv_po
# then we can just multiply the acceleration factors.
if (inherits(dist, 'surv_po')) {
dist$or <- dist$or * or
return(dist)
}
create_list_object(
c('surv_po', 'surv_dist'),
dist = dist,
or = or
)
}
#' @export
#'
#' @tests
#'
#' dist1 <- define_surv_param("exp", rate = 0.50)
#' dist2 <- apply_or(dist1, 0.5)
#' expect_equal(
#' odds_to_prob(prob_to_odds(surv_prob(dist1, seq_len(100))) / 0.5),
#' surv_prob(dist2, seq_len(100))
#' )
surv_prob.surv_po <- function(x, time, ...) {
bl_prob <- surv_prob(x$dist, time)
bl_odds <- prob_to_odds(bl_prob)
odds <- bl_odds * (1/ x$or)
prob <- odds_to_prob(odds)
prob
}
#' @export
#'
#' @tests
#' dist1 <- apply_or(define_surv_param('exp', rate = 0.025), 0.5)
#' expect_output(
#' print(dist1),
#' 'A proportional odds survival distribution:
#' * Odds Ratio: 0.5
#' * Baseline Distribution: An exponential distribution (rate = 0.025).',
#' fixed = T
#' )
print.surv_po <- function(x, ...) {
bl_dist_output <- to_list_item_output(x$dist)
output <- paste0(
c(
'A proportional odds survival distribution:',
glue(' * Odds Ratio: {x$or}'),
glue(' * Baseline Distribution: {bl_dist_output}')
),
collapse = '\n'
)
cat(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.