#' @title Fast Balanced Sampling
#' @name fbs
#' @description
#'
#' This function implements the method proposed by Hasler and Tillé (2014). It should be used for selecting a sample from highly stratified population.
#'
#' @param X A matrix of size (\eqn{N} x \eqn{p}) of auxiliary variables on which the sample must be balanced.
#' @param strata A vector of integers that specifies the stratification.
#' @param pik A vector of inclusion probabilities.
#' @param rand if TRUE, the data are randomly arranged. Default TRUE
#' @param landing if TRUE, landing by linear programming otherwise supression of variables. Default TRUE
#'
#' @details
#' Firstly a flight phase is performed on each strata. Secondly, several flight phases are applied by adding one by one the stratum. By doing this, some strata are managed on-the-fly. Finally, a landing phase is applied by suppression of the variables. If the number of element selected in each stratum is not equal to an integer, the function can be very time-consuming.
#'
#' @return A vector with elements equal to 0 or 1. The value 1 indicates that the unit is selected while the value 0 is for rejected units.
#'
#' @references
#' Hasler, C. and Tillé Y. (2014). Fast balanced sampling for highly stratified population. \emph{Computational Statistics and Data Analysis}, 74, 81-94
#'
#'
#' @importFrom sampling landingcube
#'
#' @examples
#'
#' N <- 100
#' n <- 10
#' x1 <- rgamma(N,4,25)
#' x2 <- rgamma(N,4,25)
#'
#' strata <- rep(1:n,each = N/n)
#'
#' pik <- rep(n/N,N)
#' X <- as.matrix(cbind(matrix(c(x1,x2),ncol = 2)))
#'
#' s <- fbs(X,strata,pik)
#'
#' t(X/pik)%*%s
#' t(X/pik)%*%pik
#'
#' Xcat <- disj(strata)
#'
#' t(Xcat)%*%s
#' t(Xcat)%*%pik
#'
#'
#' @export
fbs <- function(X,strata,pik,rand = TRUE,landing = TRUE){
if(rand == TRUE){
strataInit <- strata
## cleanstrata
a = sort(unique(as.vector(strata)))
b = 1:length(a)
names(b) = a
strata <- as.vector(b[as.character(strata)])
## RANDOMIZATION
o <- order(strata)
# strata[o] # this order the vector
o_split <- split(o, f = strata[o] ) # split and randomize in each category
for( i in 1:length(o_split)){
o_tmp <- sample(1:length(o_split[[i]]))
o_split[[i]] <- o_split[[i]][o_tmp]
}
o_out <- unlist(o_split[sample(1:length(o_split))]) # unlist and randomize each category
XInit <- X
pikInit <- pik
X <- as.matrix(X[o_out,])
strata <- as.matrix(strata[o_out])
pik <- pik[o_out]
}
H <- as.numeric(ncat(as.matrix(strata)))
pik_tmp <- pik
EPS <- 1e-8
##----------------------------------------------------------------
## Flightphase on each strata -
##----------------------------------------------------------------
for(k in 1:H){
# pik_tmp[strata == k] <- sampling::fastflightcube(cbind(pik[which(strata == k)],as.matrix(X[which(strata == k),])),
# pik[strata == k],
# comment = FALSE)
pik_tmp[strata == k] <- ffphase(as.matrix(cbind(pik[which(strata == k)],as.matrix(X[which(strata == k),]))),
pik[strata == k])
}
###################### CHECK
# t(X/pik)%*%pik_tmp
# t(X/pik)%*%pik
# Xcat <- disj(strata)
# t(Xcat)%*%pik
# t(Xcat)%*%pik_tmp
##----------------------------------------------------------------
## Flightphase on the uninon of strata U1 -- Uk -
##----------------------------------------------------------------
i <- which(pik_tmp > EPS & pik_tmp < (1-EPS))
# length(i)
if(length(i) != 0){
Xnn <- disj(strata)
for(k in 1:H){
# print(k)
i <- which(strata <= k & (pik_tmp > EPS & pik_tmp < (1-EPS)))
# strata_tmp2 <- Xnn[i,1:k]
# strata_tmp2 <- disjMatrix(as.matrix(strata[i]))
strata_tmp2 <- disj(strata[i])
strata_tmp2 <- strata_tmp2*pik_tmp[i]
X_tmp <- as.matrix((X[i,]*pik_tmp[i]/pik[i]))
# pik_tmp[i] <- sampling::fastflightcube(as.matrix(cbind(X_tmp,strata_tmp2)),
# pik_tmp[i],
# 1,
# comment = FALSE)
if(length(i) > 1){
pik_tmp[i] <- ffphase(as.matrix(cbind(X_tmp,strata_tmp2)),
pik_tmp[i])
}
}
}
###################### CHECK
# t(X/pik)%*%pik_tmp
# t(X/pik)%*%pik
# Xcat <- disj(strata)
# t(Xcat)%*%pik
# t(Xcat)%*%pik_tmp
##---------------------------------------------------------------
## Landing by suppression of variables -
##---------------------------------------------------------------
i <- which(pik_tmp > EPS & pik_tmp < (1-EPS))
if(length(i) > 0){
if(landing == TRUE){
if(length(i) > 20){
warnings("The landing by using linear programming might be very time consuming. Think about landing by using drop variables.")
}
pik_tmp <- sampling::landingcube(cbind(pik,Xnn,X),pik_tmp,pik,comment = FALSE) # pass the whole matrix to compute t(A)%*%A
}else{
pik_tmp[i] <- landingRM(cbind(pik[i],Xnn[i,],X[i,])/pik[i]*pik_tmp[i],pik_tmp[i],EPS)
}
}
###################### CHECK
# t(X/pik)%*%pik_tmp
# t(X/pik)%*%pik
# Xcat <- disj(strata)
# t(Xcat)%*%pik
# t(Xcat)%*%pik_tmp
# if(length(i) != 0){
# strata_tmp3 <- as.matrix(Xnn)
# pik_tmp <- landingRM(as.matrix(cbind(pik_tmp,strata_tmp3, X/pik)),
# pik_tmp)
# # pik_tmp[i] <- landingRM(as.matrix(cbind(Xnn[i,], X[i,])),
# # pik_tmp[i],
# # pik[i])
#
# }
if(rand == TRUE){
s_01 <- rep(0,length(pik_tmp))
s_01[o_out[which(pik_tmp > (1-EPS))]] <- 1
}else{
s_01 <- round(pik_tmp,10)
}
return(s_01)
# return(round(pik_tmp,10))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.