library(tidyverse)
library(lubridate)
library(timetk)
library(readr)
# much code borrowed from https://business-science.github.io/timetk/articles/TK04_Plotting_Time_Series.html
# Setup for the plotly charts (# FALSE returns ggplots)
interactive <- TRUE
rta_members <- readRDS("C:/Users/rick2/Downloads/R/meetupxlanimate/data-raw/RTA_meetupxl.rds")
tri_members_sum <- read_csv("C:/Users/rick2/Downloads/R/meetupxlanimate/data-raw/tripass_attendees.csv") %>%
arrange(most_recent_event_date)%>%
dplyr::filter(!is.na(most_recent_event_date))
tri_members <- read_csv("C:/Users/rick2/Downloads/R/meetupxlanimate/data-raw/tripass_members.csv") %>%
arrange(most_recent_event_date)%>%
dplyr::filter(!is.na(most_recent_event_date))
tri_events <- read_csv("C:/Users/rick2/Downloads/R/meetupxlanimate/data-raw/tripass_events_counted.csv") %>%
arrange(event_date) %>%
dplyr::filter(!is.na(event_date))
message("Events")
tri_events %>%
plot_time_series(event_date, rsvp_yes_count,
.interactive = interactive,
.plotly_slider = TRUE)
data_sci_events <-
tri_events %>% dplyr::filter(grepl("SCIENCE", toupper(event_name)))
tri_events2 <- tri_events %>%
mutate(event_type = case_when(grepl("SCIENCE", toupper(event_name)) ~ "Data Science",
grepl("SHOP", toupper(event_name)) ~ "Shop Talk",
grepl("SATURDAY", toupper(event_name)) ~ "SQL SATURDAY",
TRUE ~ "OTHER"))
tri_events2 %>%
group_by(event_type) %>%
plot_time_series(event_date, rsvp_yes_count,
.facet_ncol = 2, .facet_scales = "free",
.interactive = interactive)
message("Members - joined vs. attend")
tri_members_joined_sum <- tri_members %>%
group_by(joined_date) %>%
summarise(events_attended_num = sum(events_attended_num)) %>%
mutate(joined_date = mdy(joined_date)) %>%
arrange(joined_date)
tri_members_joined_sum %>%
plot_time_series(joined_date, events_attended_num,
.interactive = interactive,
.plotly_slider = TRUE)
# anomalies
tri_members_joined_sum %>%
plot_anomaly_diagnostics(joined_date, events_attended_num,
.facet_ncol = 2, .interactive = FALSE)
# Could examine days since start, can't correlate date with anything
# qplot(tri_members_joined_sum$joined_date, tri_members_joined_sum$events_attended_num)
tri_members_recent_sum <- tri_members %>%
group_by(most_recent_event_date) %>%
summarise(events_attended_num = sum(events_attended_num)) %>%
mutate(most_recent_event_date = mdy(most_recent_event_date)) %>%
arrange(most_recent_event_date) %>%
dplyr::filter(!is.na(most_recent_event_date))
tri_members_recent_sum %>%
plot_time_series(most_recent_event_date, events_attended_num,
.interactive = interactive,
.plotly_slider = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.