# Coverage/size plots for supervised methods
library(tidyverse)
library(data.table)
library(gridExtra)
library(grid)
# Create theme
paper_theme <- theme_bw() +
theme(plot.title = element_text(hjust = 0.5, size = 16),
plot.subtitle = element_text(hjust = 0.5, size = 14),
legend.title = element_text(size = 14),
axis.title = element_text(size = 14),
legend.text = element_text(size = 12),
axis.text = element_text(size = 12),
strip.text = element_text(size = 12),
panel.spacing = unit(1.2, "lines"))
# Read in data
method_1 <- fread(file = "sim_data/section_4/method_1.csv") %>%
dplyr::mutate(Method = "1. Pool CDFs")
method_2 <- fread(file = "sim_data/section_4/method_2.csv") %>%
dplyr::mutate(Method = "2. Subsample Once")
method_3 <- fread(file = "sim_data/section_4/method_3.csv") %>%
dplyr::rename(coverage = coverage_2alpha, avg_size = avg_size_2alpha) %>%
dplyr::mutate(Method = "3. Repeated Subsample")
# Merge results across methods
results <- rbind(method_1, method_2, method_3, fill = TRUE)
# Code to extract legend: http://www.sthda.com/english/wiki/wiki.php?id_contents=7930#add-a-common-legend-for-multiple-ggplot2-graphs
get_legend<-function(myggplot){
tmp <- ggplot_gtable(ggplot_build(myggplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)
}
########################
##### Create plots #####
########################
##### Coverage #####
# Coverage vs k, smaller values of k
single_cov_small_k <- results %>%
dplyr::filter(mu == 0, tau_sq == 1, n == 100, k <= 100) %>%
ggplot(aes(x = k, y = coverage, color = Method)) +
geom_point(alpha = 0.5) +
geom_line() +
geom_hline(yintercept = 0.90, lty = "dashed") +
lims(y = c(0.86, 1)) +
labs(x = "Number of Groups (k)",
y = "Coverage",
title = "Smaller k Values") +
scale_color_manual(values = c("#FF3636", "black", "#2059FF")) +
paper_theme +
theme(legend.position = "bottom")
# Coverage vs k, larger values of k
single_cov_large_k <- results %>%
dplyr::filter(mu == 0, tau_sq == 1, n == 100, k >= 200) %>%
ggplot(aes(x = k, y = coverage, color = Method)) +
geom_point(alpha = 0.5) +
geom_line() +
geom_hline(yintercept = 0.90, lty = "dashed") +
lims(y = c(0.86, 1)) +
labs(x = "Number of Groups (k)",
y = "Coverage",
title = "Larger k Values") +
scale_color_manual(values = c("#FF3636", "black", "#2059FF")) +
paper_theme +
theme(legend.position = "none")
# Combined coverage plot
legend <- get_legend(single_cov_small_k)
single_cov_small_k <- single_cov_small_k + theme(legend.position = "none")
cov_n100 <-
grid.arrange(single_cov_small_k, single_cov_large_k, legend, ncol = 2, nrow = 2,
layout_matrix = rbind(c(1, 2), c(3, 3)),
widths = c(2.7, 2.7), heights = c(2, 0.2))
##### Size #####
# Size vs k, smaller values of k
single_size_small_k <- results %>%
dplyr::filter(mu == 0, tau_sq == 1, n == 100, k <= 100) %>%
ggplot(aes(x = k, y = avg_size, color = Method)) +
geom_point(alpha = 0.5) +
geom_line() +
labs(x = "Number of Groups (k)",
y = "Average Prediction Set Size",
title = "Smaller k Values") +
scale_color_manual(values = c("#FF3636", "black", "#2059FF")) +
paper_theme +
theme(legend.position = "bottom")
# Size vs k, larger values of k
single_size_large_k <- results %>%
dplyr::filter(mu == 0, tau_sq == 1, n == 100, k >= 200) %>%
ggplot(aes(x = k, y = avg_size, color = Method)) +
geom_point(alpha = 0.5) +
geom_line() +
labs(x = "Number of Groups (k)",
y = "Average Prediction Set Size",
title = "Larger k Values") +
scale_color_manual(values = c("#FF3636", "black", "#2059FF")) +
paper_theme +
theme(legend.position = "none")
# Combined coverage plot
legend <- get_legend(single_size_small_k)
single_size_small_k <- single_size_small_k + theme(legend.position = "none")
size_n100 <-
grid.arrange(single_size_small_k, single_size_large_k, legend, ncol = 2, nrow = 2,
layout_matrix = rbind(c(1, 2), c(3, 3)),
widths = c(2.7, 2.7), heights = c(2, 0.2))
######################
##### Save plots #####
######################
ggsave(plot = cov_n100,
filename = "sim_figures/section_4/sup_cov_n100.pdf",
width = 10, height = 3.5)
ggsave(plot = size_n100,
filename = "sim_figures/section_4/sup_size_n100.pdf",
width = 10, height = 3.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.