DiffCor: Differential correlation analysis

Description Usage Arguments Value Examples

View source: R/DysReg_2.2.3.R

Description

Differential correlation analysis with Fishers' Z test.

Usage

1
DiffCor(exp.1, exp.2, tf2tar, cor.method = 'pearson', p.adj, verbose = TRUE)

Arguments

exp.1

Expression matrix of a special condition. Columns correspond to genes, rows correspond to experiments. The matrix is expected to be already normalized.

exp.2

Expression matrix of an another special condition. Columns correspond to genes, rows correspond to experiments. The matrix is expected to be already normalized.

tf2tar

The prior reference GRN containing TF-target relationships.

cor.method

The method used to calculate correlation coefficient.

p.adj

Correction method for p value adjust.

verbose

A logical value indicating whether display the computating progress.

Value

The identified regulations.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
data(ExpData) 
data(tf2tar)
data(ClinData)

group.1 <- ClinData$sample[which(ClinData$binaryResponse == 'CR/PR')]
exp.1 <- ExpData[,colnames(ExpData) %in% group.1]

group.2 <- ClinData$sample[which(ClinData$binaryResponse == 'SD/PD')]
exp.2 <- ExpData[,colnames(ExpData) %in% group.2]

## implement differential correlation analysis
diffcor.res <- DiffCor(exp.1 = exp.1, exp.2 = exp.2, tf2tar, 
                       cor.method = 'pearson', p.adj = 'BH',
                       verbose = TRUE)
                       
## set cutoff
diffcor.res <- subset(diffcor.res,p.val < 0.05)
head(diffcor.res)

SCBIT-YYLab/DysRegSig documentation built on July 19, 2021, 4:38 a.m.