| calcgis | R Documentation |
Calculate missing station data for XerMtn and CondQR50
calcgis(station)
station |
|
XerMtn is calculated from PSA6C if the latter is present with no NA value. If XerMtn is
present with NA values, PSA6C is used if present with no NA values. XerMtn = 1 if
PSA6C is 'SN', 'NC', otherwise XerMtn = 0 if PSA6C is 'CH', 'CV', 'DM', 'SC'.
CondQR50 is calculated from the quantregForest object in rfmods
if all predictors are present in stations and no missing values are in the predictors. Similar to XerMtn,
NA values will be predicted per row only if the column already exists. The required predictors are 'CaO_Mean',
'MgO_Mean', 'S_Mean', 'UCS_Mean', 'LPREM_mean', 'AtmCa', 'AtmMg', 'AtmSO4', 'MINP_WS', 'MEANP_WS', 'SumAve_P',
'TMAX_WS', 'XWD_WS', 'MAXWD_WS', 'LST32AVE', 'BDH_AVE', 'KFCT_AVE', 'PRMH_AVE'.
The original station data with calculated fields where applicable.
chkinp
# this calculates CondQR50 and XerMtn
calcgis(demo_station)
## Not run:
# get XerMtn from PSA6c
tmp <- demo_station[, !names(demo_station) %in% 'XerMtn']
calcgis(tmp)
# error, cannot get XerMtn if PSA6C not found
tmp <- demo_station[, !names(demo_station) %in% c('XerMtn', 'PSA6C')]
calcgis(tmp)
# get conductivity
tmp <- demo_station
calcgis(tmp)
# get conductivity for only NA
tmp <- demo_station
tmp$CondQR50[1] <- 200
calcgis(tmp)
# error, cannot calculate conductivity if missing predictors
tmp <- demo_station[, !names(demo_station) %in% c('TMAX_WS', 'AtmSO4')]
calcgis(tmp)
# error, cannot calculate conductivity if missing values in predictors
tmp <- demo_station
tmp$MINP_WS[2] <- NA
tmp$AtmSO4[3] <- NA
calcgis(tmp)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.