#' @title Generate AR(1) Block Process
#' @description
#' This function allows us to generate a non-stationary AR(1) block process.
#' @export
#' @usage gen_ar1blocks(phi, sigma2, n_total, n_block, scale = 10,
#' title = NULL, seed = 135, ...)
#' @param phi A \code{double} value for the autocorrection parameter \eqn{\phi}{phi}.
#' @param sigma2 A \code{double} value for the variance parameter \eqn{\sigma ^2}{sigma^2}.
#' @param n_total An \code{integer} indicating the length of the simulated AR(1) block process.
#' @param n_block An \code{integer} indicating the length of each block of the AR(1) block process.
#' @param scale An \code{integer} indicating the number of levels of decomposition. The default value is 10.
#' @param title A \code{string} indicating the name of the time series data.
#' @param seed An \code{integer} defined for simulation replication purposes.
#' @param ... Additional parameters.
#' @return A \code{vector} containing the AR(1) block process.
#' @note This function generates a non-stationary AR(1) block process whose
#' theoretical maximum overlapping allan variance (MOAV) is different
#' from the theoretical MOAV of a stationary AR(1) process. This difference in the value of the allan variance
#' between stationary and non-stationary processes has been shown through the
#' calculation of the theoretical allan variance given in "A Study of the Allan Variance for
#' Constant-Mean Non-Stationary Processes" by Xu et al. (IEEE Signal Processing Letters, 2017),
#' preprint available: \url{https://arxiv.org/abs/1702.07795}.
#' @author Yuming Zhang and Haotian Xu
#' @examples
#' Xt = gen_ar1blocks(phi = 0.9, sigma2 = 1,
#' n_total = 1000, n_block = 10, scale = 100)
#' plot(Xt)
#'
#' Yt = gen_ar1blocks(phi = 0.5, sigma2 = 5, n_total = 800,
#' n_block = 20, scale = 50)
#' plot(Yt)
gen_ar1blocks = function(phi, sigma2, n_total, n_block,
scale = 10, title = NULL, seed = 135, ...){
set.seed(seed)
ar = NULL
for (i in (1:(n_total / n_block))) {
xt = gen_ar1(N = n_block * scale, phi = phi, sigma2 = sigma2)
x0 = xt[(n_block*(scale-1))]
xt = xt[(n_block*(scale-1)+1): (n_block*scale)]
ar = c(ar, xt)
}
if (is.null(title)){
title = "Simulated AR(1) Blocks Process"
}
ar = gts(ar, data_name = title)
return(ar)
}
#' @title Generate Non-Stationary White Noise Process
#' @description
#' This function allows to generate a non-stationary white noise process.
#' @export
#' @usage gen_nswn(n_total, title = NULL, seed = 135, ...)
#' @param n_total An \code{integer} indicating the length of the simulated non-stationary white noise process.
#' @param title A \code{string} defining the name of the time series data.
#' @param seed An \code{integer} defined for simulation replication purposes.
#' @param ... Additional parameters.
#' @return A \code{vector} containing the non-stationary white noise process.
#' @note This function generates a non-stationary white noise process whose theoretical maximum overlapping allan variance (MOAV) corresponds to the
#' theoretical MOAV of the stationary white noise process. This example confirms that the allan
#' variance is unable to distinguish between a stationary white noise process and a white noise
#' process whose second-order behavior is non-stationary, as pointed out in the paper "A Study of
#' the Allan Variance for Constant-Mean Non-Stationary Processes" by Xu et al. (IEEE Signal Processing
#' Letters, 2017), preprint available: \url{https://arxiv.org/abs/1702.07795}.
#' @author Yuming Zhang
#' @examples
#' Xt = gen_nswn(n_total = 1000)
#' plot(Xt)
#'
#' Yt = gen_nswn(n_total = 2000, title = "non-stationary
#' white noise process", seed = 1960)
#' plot(Yt)
gen_nswn = function(n_total, title = NULL, seed = 135, ...){
set.seed(seed)
wn = NULL
for (i in (1:n_total)){
y = rnorm(n = 1, mean = 0, sd = sqrt(i))
wn = c(wn, y)
}
if (is.null(title)){
title = "Simulated Non-Stationary White Noise Process"
}
wn = gts(wn, data_name = title)
return(wn)
}
#' @title Generate Bias-Instability Process
#' @description
#' This function allows to generate a non-stationary bias-instability process.
#' @export
#' @usage gen_bi(sigma2, n_total, n_block, title = NULL, seed = 135, ...)
#' @param sigma2 A \code{double} value for the variance parameter \eqn{\sigma ^2}{sigma^2}.
#' @param n_total An \code{integer} indicating the length of the simulated bias-instability process.
#' @param n_block An \code{integer} indicating the length of each block of the bias-instability process.
#' @param title A \code{string} defining the name of the time series data.
#' @param seed An \code{integer} defined for simulation replication purposes.
#' @param ... Additional parameters.
#' @return A \code{vector} containing the bias-instability process.
#' @note This function generates a non-stationary bias-instability process
#' whose theoretical maximum overlapping allan variance (MOAV) is close to the theoretical
#' MOAV of the best approximation of this process through a stationary AR(1) process over some scales. However, this approximation
#' is not good enough when considering the logarithmic representation of the allan variance.
#' Therefore, the exact form of the allan variance of this non-stationary process allows us
#' to better interpret the signals characterized by bias-instability, as shown in "A Study
#' of the Allan Variance for Constant-Mean Non-Stationary Processes" by Xu et al. (IEEE Signal
#' Processing Letters, 2017), preprint available: \url{https://arxiv.org/abs/1702.07795}.
#' @author Yuming Zhang
#' @examples
#' Xt = gen_bi(sigma2 = 1, n_total = 1000, n_block = 10)
#' plot(Xt)
#'
#' Yt = gen_bi(sigma2 = 0.8, n_total = 800, n_block = 20,
#' title = "non-stationary bias-instability process")
#' plot(Yt)
gen_bi = function(sigma2, n_total, n_block, title = NULL, seed = 135, ...){
set.seed(seed)
bi = NULL
for (i in (1:(n_total / n_block))){
x = rnorm(n = 1, mean = 0, sd = sqrt(sigma2))
bi = c(bi, rep(x, n_block))
}
if (is.null(title)){
title = "Simulated Bias-Instability Process"
}
bi = gts(bi, data_name = title)
return(bi)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.