##########################
# Some Help Functions
##########################
search_grid = function(p, d, q){
o = expand.grid(p,d,q)
colnames(o) = c("p","d","q")
o
}
select_arima_ = function(xt, p = 0L, d = 0L, q = 0L,
include.mean = FALSE, class = NULL){
ic = NULL
# Compute sample size
n = length(xt)
# Make models
a = search_grid(p,d,q)
split(as.matrix(a), row(a)) %>% # Pop by row.
map(~ arima(xt, order = ., include.mean = include.mean)) -> b
b %>% map_df(broom::glance) -> model_stats
b %>% map_dbl(AIC, k = 2*log(log(n))) -> HQ
model_stats$HQ = HQ
model_stats = cbind(a, model_stats)
model_stats %>%
mutate(models = b) %>%
gather(ic, value, AIC:HQ) %>%
group_by(ic) %>%
mutate(minval = (min(value) == value)) -> model_select
structure(model_select,
n = n,
class = c(class, "select_arima","data.frame"))
}
##########################
# Selection Functions
##########################
#' @title Run Model Selection Criteria on ARIMA Models
#' @description This function performs model fitting and calculates the model selection criteria to be plotted or used in \code{best_model} function.
#' @param xt A \code{vector} of univariate time series.
#' @param p.min An \code{integer} indicating the lowest order of AR(p) process to search.
#' @param p.max An \code{integer} indicating the highest order of AR(p) process to search.
#' @param d An \code{integer} indicating the differencing order for the data.
#' @param q.min An \code{integer} indicating the lowest order of MA(q) process to search.
#' @param q.max An \code{integer} indicating the highest order of MA(q) process to search.
#' @param include.mean A \code{bool} indicating whether to fit ARIMA with the mean or not.
#' @param plot A \code{logical}. If \code{TRUE} (the default) a plot should be produced.
#' @export
#' @examples
#' xt = gen_arima(N=100, ar=0.3, d=1, ma=0.3)
#' x = select_arima(xt, d=1L)
#'
#' xt = gen_ma1(100, 0.3, 1)
#' x = select_ma(xt, q.min=2L, q.max=5L)
#' best_model(x)
#'
#' xt = gen_arma(10, c(.4,.5), c(.1), 1, 0)
#' x = select_arma(xt, p.min = 1L, p.max = 4L,
#' q.min = 1L, q.max = 3L)
#' @rdname select_arima
#' @importFrom purrr map map_df map_dbl
#' @importFrom dplyr group_by mutate
#' @importFrom tidyr gather
#' @importFrom broom glance
#' @importFrom stats AIC
#' @importFrom magrittr %>%
select_arima = function(xt,
p.min = 0L, p.max = 3L,
d = 0L,
q.min = 0L, q.max = 3L,
include.mean = TRUE, plot = TRUE){
out = select_arima_(xt,
p = p.min:p.max,
d = d,
q = q.min:q.max,
include.mean = include.mean,
class = "select_arma")
if (plot == TRUE){
plot_select_arma(x=out)
}
invisible(out)
}
#' @export
#' @rdname select_arima
select_arma = function(xt,
p.min = 0L, p.max = 3L,
q.min = 0L, q.max = 3L,
include.mean = TRUE,
plot = TRUE){
out = select_arima_(xt,
p = p.min:p.max,
d = 0L,
q = q.min:q.max,
include.mean = include.mean,
class = "select_arma")
if (plot == TRUE){
plot_select_arma(x=out)
}
invisible(out)
}
print.select_arma = function(x, ...) {
cat("Use plot() to see the model criteria or best_model() to select which model you want")
}
#' @export
#' @rdname select_arima
select_ar = function(xt, p.min = 0L, p.max = 3L,
include.mean = TRUE, plot = TRUE){
out = select_arima_(xt,
p = p.min:p.max,
d = 0L,
q = 0L,
include.mean = include.mean,
class = "select_ar")
if (plot == TRUE){
plot_select_ar(x=out)
}
invisible(out)
}
#' @export
#' @rdname select_arima
select_ma = function(xt, q.min = 0L, q.max = 3L,
include.mean = TRUE, plot = TRUE){
out = select_arima_(xt,
p = 0L,
d = 0L,
q = q.min:q.max,
include.mean = include.mean,
class = "select_ma")
if (plot == TRUE){
plot_select_ma(x=out)
}
invisible(out)
}
#' @title Select the Best Model
#' @description This function retrieves the best model from a selection procedure.
#' @param x An object of class
#' \code{\link{select_arma}}, \code{\link{select_ar}} or \code{\link{select_ma}}.
#' @param ic A \code{string} indicating the type of criterion to use in selecting the best model.
#' Supported criteria include "aic" (AIC), "bic" (BIC) and "hq" (HQ).
#'
#' @export
#' @examples
#' set.seed(18)
#' xt = gen_arima(N=100, ar=0.3, d=1, ma=0.3)
#' x = select_arima(xt, d=1L)
#' best_model(x, ic = "aic")
#'
#' set.seed(19)
#' xt = gen_ma1(100, 0.3, 1)
#' x = select_ma(xt, q.min=2L, q.max=5L)
#' best_model(x, ic = "bic")
#'
#' set.seed(20)
#' xt = gen_arma(100, c(.3,.5), c(.1), 1, 0)
#' x = select_arma(xt, p.min = 1L, p.max = 4L,
#' q.min = 1L, q.max = 3L)
#' best_model(x, ic = "hq")
#'
#' @importFrom dplyr filter_
best_model = function(x, ic = "aic"){
criterion = switch(tolower(ic),
"aic" = "AIC",
"bic" = "BIC",
"hq" = "HQ",
stop("`criterion` not supported!"))
crt = paste0("ic == '", criterion,"' & (minval == TRUE)")
x %>%
filter_(crt) -> o
o$models[[1]]$call$order = eval(parse(text=paste0("c(",o$p,",",o$d,",",o$q,")")))
o$models[[1]]
}
##########################
# Plotting Functions
##########################
# For select_ar
plot_select_ar = function(x){
# Labs and title
xlab = "Autoregressive Order (p)"
ylab = "Criterion Values"
main = "Model Selection for Autoregressive Process"
# Store values to prepare for plotting
p_max = max(x$p)
p_min = min(x$p)
p_length = p_max - p_min + 1
aic_value = rep(NA, p_length)
bic_value = rep(NA, p_length)
hq_value = rep(NA, p_length)
for (i in 1:p_length){
aic_value[i] = x$value[i]
bic_value[i] = x$value[i+p_length]
hq_value[i] = x$value[i+2*p_length]
}
# Main plot
plot(NA, xlim = c(p_min, p_max), ylim = range(x$value),
xlab = xlab, ylab = ylab,
xaxt = 'n', yaxt = 'n', bty = "n", ann = FALSE, cex.lab = 1.15)
win_dim = par("usr")
par(new = TRUE)
plot(NA, xlim = c(p_min, p_max), ylim = c(win_dim[3], win_dim[4] + 0.09*(win_dim[4] - win_dim[3])),
xlab = xlab, ylab = ylab, xaxt = 'n', yaxt = 'n', bty = "n", cex.lab = 1.15)
win_dim = par("usr")
# Add grid
grid(NULL, NULL, lty = 1, col = "grey95")
# Add title
x_vec = c(win_dim[1], win_dim[2], win_dim[2], win_dim[1])
y_vec = c(win_dim[4], win_dim[4],
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]),
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))
polygon(x_vec, y_vec, col = "grey95", border = NA)
text(x = mean(c(win_dim[1], win_dim[2])),
y = (win_dim[4] - 0.09/2*(win_dim[4] - win_dim[3])),
main)
# Add axes and box
lines(x_vec[1:2], rep((win_dim[4] - 0.09*(win_dim[4] - win_dim[3])),2), col = 1)
box()
axis(1, at = seq(p_min, p_max), padj = 0.3)
y_axis = axis(2, labels = FALSE, tick = FALSE)
y_axis = y_axis[y_axis < (win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))]
axis(2, padj = -0.2, at = y_axis)
# Plotting
col_aic = "#F8766DFF"
col_bic = "#00BA38FF"
col_hq = "#619CFFFF"
lines(seq(p_min, p_max), aic_value, col = col_aic, lwd = 2)
lines(seq(p_min, p_max), bic_value, col = col_bic, lwd = 2)
lines(seq(p_min, p_max), hq_value, col = col_hq, lwd = 2)
# Add best models
points(x$p[which.min(aic_value)], aic_value[which.min(aic_value)],
col = col_aic, pch = 16, cex = 2)
points(x$p[which.min(bic_value)], bic_value[which.min(bic_value)],
col = col_bic, pch = 16, cex = 2)
points(x$p[which.min(hq_value)], hq_value[which.min(hq_value)],
col = col_hq, pch = 16, cex = 2)
# # Add legend
# usr = par("usr")
# lgd = legend(x = mean(c(usr[1],usr[2])),
# y = mean(c(usr[3],usr[4])),
# plot = F,
# legend = c("AIC", "BIC", "HQ"))
#
# #x = usr[1] + lgd$rect$w*0.08,
# # y = usr[4] - lgd$rect$h*0.3,
# legend("bottomleft",
# legend = c("AIC", "BIC", "HQ"),
# text.col = rep("black", 3),
# lty = rep(1,3),
# pch = rep(16,3),
# pt.cex = 1.5,
# lwd = 1.5,
# col = c(col_aic, col_bic, col_hq),
# bty = "n", cex = 1.25)
# #,
# # x.intersp = 0.5,
# # y.intersp = 0.5)
legend("topright",
legend = c("AIC", "BIC", "HQ"),
text.col = rep("black", 3),
lty = rep(1,3),
pch = rep(16,3),
pt.cex = 1.5,
lwd = 1.5,
col = c(col_aic, col_bic, col_hq),
bty = "n", cex = 1.25,
inset = c(0, 0.05))
}
plot_select_ma = function(x){
# Labs and title
xlab = "Moving Average Order (q)"
ylab = "Criterion Values"
main = "Model Selection for Moving Average Process"
# Store values to prepare for plotting
q_max = max(x$q)
q_min = min(x$q)
q_length = q_max - q_min + 1
aic_value = rep(NA, q_length)
bic_value = rep(NA, q_length)
hq_value = rep(NA, q_length)
for (i in 1:q_length){
aic_value[i] = x$value[i]
bic_value[i] = x$value[i+q_length]
hq_value[i] = x$value[i+2*q_length]
}
# Main plot
plot(NA, xlim = c(q_min, q_max), ylim = range(x$value),
xlab = xlab, ylab = ylab,
xaxt = 'n', yaxt = 'n', bty = "n", ann = FALSE, cex.lab = 1.15)
win_dim = par("usr")
par(new = TRUE)
plot(NA, xlim = c(q_min, q_max), ylim = c(win_dim[3], win_dim[4] + 0.09*(win_dim[4] - win_dim[3])),
xlab = xlab, ylab = ylab, xaxt = 'n', yaxt = 'n', bty = "n", cex.lab = 1.15)
win_dim = par("usr")
# Add grid
grid(NULL, NULL, lty = 1, col = "grey95")
# Add title
x_vec = c(win_dim[1], win_dim[2], win_dim[2], win_dim[1])
y_vec = c(win_dim[4], win_dim[4],
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]),
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))
polygon(x_vec, y_vec, col = "grey95", border = NA)
text(x = mean(c(win_dim[1], win_dim[2])),
y = (win_dim[4] - 0.09/2*(win_dim[4] - win_dim[3])),
main)
# Add axes and box
lines(x_vec[1:2], rep((win_dim[4] - 0.09*(win_dim[4] - win_dim[3])),2), col = 1)
box()
axis(1, at = seq(q_min, q_max), padj = 0.3)
y_axis = axis(2, labels = FALSE, tick = FALSE)
y_axis = y_axis[y_axis < (win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))]
axis(2, padj = -0.2, at = y_axis)
# Plotting
col_aic = "#F8766DFF"
col_bic = "#00BA38FF"
col_hq = "#619CFFFF"
lines(seq(q_min, q_max), aic_value, col = col_aic, lwd = 2)
lines(seq(q_min, q_max), bic_value, col = col_bic, lwd = 2)
lines(seq(q_min, q_max), hq_value, col = col_hq, lwd = 2)
# Add best models
points(x$q[which.min(aic_value)], aic_value[which.min(aic_value)],
col = col_aic, pch = 16, cex = 2)
points(x$q[which.min(bic_value)], bic_value[which.min(bic_value)],
col = col_bic, pch = 16, cex = 2)
points(x$q[which.min(hq_value)], hq_value[which.min(hq_value)],
col = col_hq, pch = 16, cex = 2)
# # Add legend
# usr = par("usr")
# lgd = legend(x = mean(c(usr[1],usr[2])),
# y = mean(c(usr[3],usr[4])),
# plot = F,
# legend = c("AIC", "BIC", "HQ"))
# legend("bottomleft",
# legend = c("AIC", "BIC", "HQ"),
# text.col = rep("black", 3),
# lty = rep(1,3),
# pch = rep(16,3),
# pt.cex = 1.5,
# lwd = 1.5,
# col = c(col_aic, col_bic, col_hq),
# bty = "n", cex = 1.25)
legend("topright",
legend = c("AIC", "BIC", "HQ"),
text.col = rep("black", 3),
lty = rep(1,3),
pch = rep(16,3),
pt.cex = 1.5,
lwd = 1.5,
col = c(col_aic, col_bic, col_hq),
bty = "n", cex = 1.25,
inset = c(0, 0.05))
}
# ----- For select_arma
plot_select_arma = function(x){
# Labs and title
xlab = "Moving Average Order (q)"
ylab = "Criterion Values"
# Store values to prepare for plotting
p_max = max(x$p); p_min = min(x$p); p_length = p_max - p_min + 1
q_max = max(x$q); q_min = min(x$q); q_length = q_max - q_min + 1
aic_value = x$value[1:(p_length*q_length)]
bic_value = x$value[(p_length*q_length+1):(p_length*q_length*2)]
hq_value = x$value[(p_length*q_length*2+1):(p_length*q_length*3)]
col_aic = "#F8766DFF"; col_bic = "#00BA38FF"; col_hq = "#619CFFFF"
# Store values of best model
aic_region = 1:(p_length*q_length)
bic_region = (p_length*q_length+1):(p_length*q_length*2)
hq_region = (p_length*q_length*2+1):(p_length*q_length*3)
best_index_aic = which.min(x$value[aic_region])
best_value_aic = min(x$value[aic_region])
best_p_aic = (x$p[aic_region])[best_index_aic]
best_q_aic = (x$q[aic_region])[best_index_aic]
best_index_bic = which.min(x$value[bic_region])
best_value_bic = min(x$value[bic_region])
best_p_bic = (x$p[bic_region])[best_index_bic]
best_q_bic = (x$q[bic_region])[best_index_bic]
best_index_hq = which.min(x$value[hq_region])
best_value_hq = min(x$value[hq_region])
best_p_hq = (x$p[hq_region])[best_index_hq]
best_q_hq = (x$q[hq_region])[best_index_hq]
# Main plot
par(mfrow = c(ceiling(q_length / 2), 2))
for (i in 1:q_length){
# Main plot
plot(NA, xlim = c(p_min, p_max), ylim = range(x$value),
xlab = xlab, ylab = ylab,
xaxt = 'n', yaxt = 'n', bty = "n", ann = FALSE)
win_dim = par("usr")
par(new = TRUE)
plot(NA, xlim = c(p_min, p_max), ylim = c(win_dim[3], win_dim[4] + 0.09*(win_dim[4] - win_dim[3])),
xlab = "Autoregressive Order (p)", ylab = NA, xaxt = 'n', yaxt = 'n', bty = "n")
win_dim = par("usr")
# Add grid
grid(NULL, NULL, lty = 1, col = "grey95")
# Add title
x_vec = c(win_dim[1], win_dim[2], win_dim[2], win_dim[1])
y_vec = c(win_dim[4], win_dim[4],
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]),
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))
polygon(x_vec, y_vec, col = "grey95", border = NA)
text(x = mean(c(win_dim[1], win_dim[2])),
y = (win_dim[4] - 0.09/2*(win_dim[4] - win_dim[3])),
paste("q = ",toString(seq(q_min, q_max)[i]), sep = ""))
# Add axes and box
lines(x_vec[1:2], rep((win_dim[4] - 0.09*(win_dim[4] - win_dim[3])),2), col = 1)
box()
axis(1, at = seq(p_min, p_max), padj = 0.3)
y_axis = axis(2, labels = FALSE, tick = FALSE)
y_axis = y_axis[y_axis < (win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))]
axis(2, padj = -0.2, at = y_axis)
# Plotting
lines(seq(p_min, p_max), aic_value[((i-1)*p_length+1): (i*p_length)],
col = col_aic, lwd = 2)
lines(seq(p_min, p_max), bic_value[((i-1)*p_length+1): (i*p_length)],
col = col_bic, lwd = 2)
lines(seq(p_min, p_max), hq_value[((i-1)*p_length+1): (i*p_length)],
col = col_hq, lwd = 2)
# Add best model
if ((i-1) == best_q_aic){points(best_p_aic, best_value_aic, col = col_aic, pch = 16, cex = 2)}
if ((i-1) == best_q_bic){points(best_p_bic, best_value_bic, col = col_bic, pch = 16, cex = 2)}
if ((i-1) == best_q_hq){points(best_p_hq, best_value_hq, col = col_hq, pch = 16, cex = 2)}
# Add legend
if(i==1){
# usr = par("usr")
# lgd = legend(x = mean(c(usr[1],usr[2])),
# y = mean(c(usr[3],usr[4])),
# plot = F,
# legend = c("AIC", "BIC", "HQ"))
# legend("bottomleft",
# legend = c("AIC", "BIC", "HQ"),
# text.col = rep("black", 3),
# lty = rep(1,3),
# pch = rep(16,3),
# pt.cex = 1.5,
# lwd = 1.5,
# col = c(col_aic, col_bic, col_hq),
# bty = "n", cex = 1.25)
# legend("topright",
# legend = c("AIC", "BIC", "HQ"),
# text.col = rep("black", 3),
# lty = rep(1,3),
# pch = rep(16,3),
# pt.cex = 1.5,
# lwd = 1.5,
# col = c(col_aic, col_bic, col_hq),
# bty = "n", cex = 1.25,
# inset = c(-0.15, -0.08),
# y.intersp = 0.5)
legend("topright",
legend = c("AIC", "BIC", "HQ"),
text.col = rep("black", 3),
lty = rep(1,3),
pch = rep(16,3),
pt.cex = 1.5,
lwd = 1.5,
col = c(col_aic, col_bic, col_hq),
bty = "n", cex = 1.25,
inset = c(0, 0.05))
}
}
# Add overall x,y labels
mtext(xlab, side = 1, outer = TRUE, line = -1)
mtext(ylab, side = 2, outer = TRUE, line = -1)
par(mfrow = c(1,1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.